Chapter 7 - Section A

Mostafa Touny

August 18, 2023

Contents

Exercises	es															2												
Ex. 11																												2
Ex. 17																												3
Ex. 19																												3

Exercises

Ex. 11

 (\rightarrow) Observe $v = v_U + v_{U^{\perp}}$ and $w = w_U + w_{U^{\perp}}$. Clearly,

$$\langle Pv, w \rangle = \langle v_U, w \rangle$$

$$= \langle v_U, w_{U^{\perp}} \rangle + \langle v_U, w_U \rangle$$

$$= 0 + \langle v_U, w_U \rangle$$

$$\langle v, Pw \rangle = \langle v_{U^{\perp}}, w_U \rangle + \langle v_U, w_U \rangle$$

$$= 0 + \langle v_U, w_U \rangle$$

 (\leftarrow) For $U = range\ T$ and $v = v_U + v_{U^{\perp}}$, we show $Tv = v_U$.

Lemma. $Tv_U = v_U$.

Since $v_U \in range\ T$, by definition we know $Tv_0 = v_U$. So $T(Tv_0) = Tv_0$ as $T^2 = T$, which concludes $Tv_U = v_U$.

Lemma. $Tv_{U^{\perp}} = 0$.

By definition we know $v_{U^{\perp}} \in (range\ T)^{\perp}$. But given T is self-adjoint, $(range\ T)^{\perp} = null\ T$. So $v_{U^{\perp}} \in null\ T$.

In conclusion, $Tv = Tv_U + Tv_{U^{\perp}} = v_U + 0 = v_U$.

Ex. 17

Fact. For normal T, range $T = range\ T^*$ and null $T = null\ T^*$. For any T, range $T = (null\ T^*)^{\perp}$. See ex.16.

Lemma. For normal T, range $T \cap null\ T = \{0\}$.

Observe $L.H.S = (null\ T^*)^{\perp} \cap (null\ T^*)$ by the aforementioned facts.

Theorem. $null\ T^k = null\ T$.

Clearly null $T \subset null\ T^k$ as T0 = 0 for any operator T. It remains to show null $T^k \subset null\ T$.

$$v \to^T v_1 \to^T v_2 \to^T \cdots \to^T v_k = 0.$$

 $v_{k-1} \in range \ T \cap null \ T, \text{ so } v_{k-1} = 0.$

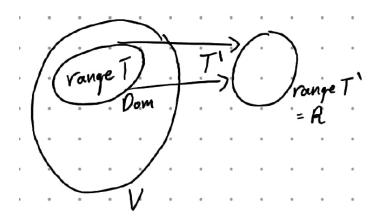
. . .

 $v_1 \in rangeT \cap nullT$, so $v_1 = 0$.

Thus $Tv = v_1 = 0$, and $v \in null\ T$.

Theorem. range $T^k = range T$.

Let T' be the same as T but restricted on subspace $range\ T$. Observe it is a linear operator.



We prove $null\ T' = \{0\}$. Observe for $v \in null\ T', v \in range\ T \cap null\ T$, and hence v = 0. Clearly T'0 = 0 as T0 = 0 for any operator T.

It follows dim null T'=0. By The Fundamental Theorem of Linear Maps (See Axler page 63), dim range $T=\dim range\ T'$. But by definition range $T'\subset range\ T$, and therefore range $T'=range\ T$.

We conclude $T[range\ T] = range\ T$, The image of $range\ T$ under T is exactly $range\ T$. Clearly it suffices to prove our intended theorem.

Ex. 19

By normality we know null $T = (range\ T)^{\perp}$. So $(z_1, z_2, z_3) \perp v$, for any $v \in ran\ T$. It follows

$$(z_1, z_2, z_3) \cdot v = 0$$

$$(z_1, z_2, z_3) \cdot T(1, 1, 1) = 0$$

$$= (z_1, z_2, z_3) \cdot (2, 2, 2) = 2z_1 + 2z_2 + 2z_3 = 2(z_1 + z_2 + z_3)$$

Thus $z_1 + z_2 + z_3 = 0$.