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Exercises

Section 18, pages 111-112.

2

Yes. Take arbitrary open U > f(x). By continuity f~'(U) is open. Moreover x €
f~YU). By hypothesis f~1(U) N A # ¢. Tt follows ¢ # f (f~HU)NA) C f(f~(U)) N
F(A) = U f(A).

3
(a)
(«) For open U C X, by hypothesis i1 (U) = U is also open in X".

(—) Take U € T. By definition U C X. By hypothesis i ' (U) = U is open in X', i.e
UeT.

(b)
By (a), i continuous «— T D T.
Consider the continuous i~!: X — X’ map. By (a), :~* continuous «— T C T.

The intended conclusion follows.
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JR— — ,_
Construct f : (a,b) — (0,1) where f(x) — L T injective as z ¢ _ 2 a

—a —a —a
implies z = 2/, and surjective as for y € (0,1) we can take x such that b > x =

y(b—a)+ a > a implying f(z) = y. Hence f is bijective.

Observe for (¢, d) C (0,1) we have f~'(c,d) = (c(b— a)—HL d(b— )—|— ). For an arbitrary
open U C (0,1), we know U = |, (an,b,). Thereby f~1(Uy,(an, b,)) =, f~(an, by) a

union of open sets, which in turn is open.

To show [a, b] is homeomorphic with [0, 1], consider the function f : [a, b] — [0, 1] where
f(z) — P. Then for y € [0,1] we can take x such that b > z = y(b —a) + a > a.
—a

The remaining parts of the proof are analogous.
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Observe given a well-defined f : X — Y, if some © € AN B then f|A(zx) = f|B(x).
Hence, the Pasting Lemma is applicable.

It follows if f|(A; U---U Ay_1) is continuous and f|Ay is continuous, then so is
fI(A; U---U Ay). By ordinary induction the intended result follows on any finite
collection {A,}.

(b)
Lemma. Let Y be a subspace of X. if U is closed in X and U C Y, then U is closed
inY.

We know X — U is open in X. Then Y N (X — U) is open in Y. It follows

YN(X-U)=(nX)n(Y =-0)
=Yn-0)
=Y -U

Thus Y — (Y —U) = U is closed in Y.
Theorem. main problem.

Consider the function f : (0,1) — R where z — 2x. It is not continuous as [0, 1] is
closed in R but f~*([0,1]) = (0,1/2] is not closed in (0,1).

1 1
Take A, = [—, 1- —] and observe | J° 4, = (0,1).

n

n

Let B be an arbitrary closed set in R. Then {y/2 | y € B} is closed in R. To see why,
take z a limit point of it. Then 2z would be a limit point of B and it follows 2z € B,
concluding 2z/2 = z is contained in the set.

Thereby f~1A,(B) ={y/2 |y € B} N A, is closed in R. Since A, is a subspace of R
and f~1|A,(B) C A,, by our lemma, we conclude f~!|A,(B) is closed in A, also.
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Let U x V be an arbitrary open set of B x D. By definition U and V are respectively
open in B and D. By hypothesis the following are open sets

fU)={ac Al f(a) €U}

g (V) ={ceClglc) eV}



Moreover, by definition

(f % 9) (U x V) = {(a,c) € Ax C| f(a) € UAf(c) € V}
— ) x g (V)

Which is open by definition of product topology.

13

Let gy : A=Y and g5 : A — Y be two extensions of f. Then gi(x) = go(z) Yz € A (1).
Take z € A and assume towards contradiction ¢;(x) # go(z).

Note VU > x open, UN A # ¢ (2).
Since Y is Hausdorff, there are open sets V; 3 g1(x) and Vo 3 go(x) where ViNVy = ¢

(3).

By continuity of g; and g» along thm 18.1, there are open U; > x and Us > z such that
g1(U1) € Vi and go(Uz) C Va (4).

Take open U = U; N Uy and note U > z, implying by (2) Jzo € U N A. By (1),
91(z0) = g2(x0). By (4), a contradiction of (3) is reached W
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