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Exercises

Section 20
3

(a)

By theorem 18.1 (4) it suffices to take d(x,2’) € (a,b) for (z,2') € X x X, and then
construct a neighbourhood U x U’ of (z,z’) such that d(U,U’) C (a,b).

b—d !
Observe if e =&’ < #, then taking (xg,z1) € B(z,¢) x B(2/,¢'), yields
d(zo, 1) < d(xo,z) + d(x,2") + d(a, x1) triangular inequality
_ / N ’
Sb (ac,a:)+b d(x’x)—i—d(a:,m’)
4 4
b—d !
< ;x, z) +d(z,x")
<b—d(z,2')+d(z,2") =
/
Similarly e = &’ < d@, ) —a yields
d(z, ") < d(z,x0) + d(zo, 1) + d(z1,2") triangular inequality
d " —
< W + d(z9, 1)
/ —
da.a) > d(a) - LTI 20

> d(z,2") — d(xg, 1) +a=a

Taking the minimum values for ¢ and ¢’ concludes d(B(z,¢) x B(a',€")) C (a,b).
(b)

4a
Consider g(t) = (t,t,...) alongside continuity equivalence of theorem 18.1 (4).

It is continuous in the product topology. For open neighbourhood V' around (t,t,...),
all are X except finitely many open V,. for ¢ € (aq,bs), consider the distance ¢, =
min{t — a,, by, —t}. So we can take the minimum along these finite ¢, and construct a
neighbourhood U around ¢ such that f(U) C V.

Not continuous in the box topology. A counter-example is ¢g(0) = (0,0,...) with

-1 1 -1 1
Vv, = <—,—). Taking any open (a,b) > 0 implies 3z > 0 Vn, = € <—,—)-

n’'n n’'n
Contradiction.



Not continuous in the uniform topology. Consider x € RY¥ such that zyp = 0 and
T — 1/2. Observe f(0) = (0,0,...) € B(z,1/2) as Va x, < 1/2. Following the same
line of reasoning of the preceeding case, we no open neighbourhood U of 0 satisfies
f(U) C B(z,1/2).

4b

The sequence (1,1, ...) is trivially convergent to 1 in all of product, box, and uniform
topologies of R“.

5

We characterize the set of limit points.

Lemma. A sequence x = (x1,9,...) whereby x; /4 0 is not a limit point of R*.

By definition, there is a fixed g, such that for each index «, there is some ¢ > o where
|z; — 0] > &o. Consider neighbourhood B (:1:, %). It follows no element of R* is in it.
Lemma. A sequence z = (z1,2,...) whereby x; — 0 is a limit point of R>.

For any neighbourhood B(z,¢), by the convergence of x; to 0, there is some Ny, such
that Vj > Np, 0 € (x; —e,xj+ ¢). Consider the element 2’ whereby z} = z; for i < Ny
and z; = 0 for i > Ny. Observe 2’ is both in R* and B(z,¢).

Theorem. The closure is R* alongside its limit points.

Section 21

3

()

For p(x,z), we have Vi d;(z,z) = 0, hence their maximum is 0.

For p(z,y) = 0, we have some d;(z,y) = 0, hence z = y.

We know Vi d;(z,y) > 0, so their maximum is at least 0, hence p(z,y) > 0.

We know Vi d;(z,y) = d;(y,x), so p(x,y) = max;{d;(x,y)} = max;{d;(y,x)} = p(y, x).

Observe p(z,y) = max{d;(z,y)} < max{d;(z, 2)+d;(z,y)} < max{d;(z, z) }+max{d;(z,y)} =
p(e,2) + p(2,y).

(b)
For D(z,x), we have d;(z,z) = 0, so d;(z,z)/i = 0, and their supremum is 0.
If D(x,y) = 0 = sup,{d;(x,y)/i}, then d;(z,y) = 0, since d;(x,y)/i > 0. Hence x = .

We know some d;(z,y) > 0, so d;(x,y)/i > 0, hence the supremum is at least 0.

3



Since d;(x,y) = di(y,z) so does d;(x,y) = di(y,z), and in turn their supremum. i.e
D(z,y) = D(y, z).

Observe D(r,y) = sup{di(w,y)/i} < sup{df@” n d"(z.’y)} < p{M} i

2 (3 2
di(z,
Sup{ (? y)

} = D(z,2) + D(z,y).

5

Follows trivially by the author’s hints alongside theorem 21.3. For example, =, + vy, =
flx, Xyn) = flx xy)=x+y.
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