Ch.08, Sec.01 - Bartle & Sherbert. Real Analysis

Mostafa Touny

October 7, 2023

Contents

Ex.	11																					2
Ex.	18																					2
Ex.	18																					2

Exercises

Ex. 11

For $f_n(x) = \frac{x}{x+n}$, and f = 0, Clearly $||f_n - f||_{[0,a]} = ||f_n||_{[0,a]} = \frac{a}{a+n}$. But $\lim_{n\to\infty} \frac{a}{a+n} = 0$. Hence by lemma 8.1.8 (page 244), The uniform convergence on [0,a] follows.

We follow Lemma 8.1.5 (page 244). Consider subsequences $n_k = x_k = k$. Then $f_{n_k}(x_k) = \frac{k+k}{k} = \frac{1}{2}$. Therefore $|f_{n_k}(x_k) - f(x_k)| = |f_{n_k}(x_k)| = \frac{1}{2} = \epsilon_0$.

Ex. 18

We use lemma~8.1.8 (page 244). Note $f_n(x) = xe^{-nx}$ and f = 0. Then $||f_n - f||_{[0,\infty)} = ||f_n||_{[0,\infty)} = 1/n$.

To see why, Observe $f'_n(x) = (e^{-nx})(1-nx)$, and setting $f'_n(x) = 0$ yields local max/min at x = 0 and x = 1/n. That justifies the supremum we aforementioned.

But $\lim_{n\to\infty} 1/n = 0$, Concluding uniform convergence.

Ex. 21

Observe $|(f_n(x)+g_n(x))-(f(x)+g(x))| \le |f_n(x)-f(x)|+|g_n(x)-g(x)| < \epsilon/2+\epsilon/2 = \epsilon$, Following by the triangle inequality.