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Ex. 1.1
1. O(lg lg n)

• 4 lg lg n

2. O(lg n)

• 4 lg n

3. O(n1/2 lg4 n)

• n1/2 lg4 n

4. O(n)

• 5n

5. θ(n4)

• n4

6. θ((lg n)lg n)

• (lg n)5 lg n

7. θ(nlg n)

• nlg n

8. θ(nn1/5)

• nn1/5

9. θ(5n)

• 5n

• 55n

10. θ(nn/4)

• (n/4)n/4

• nn/4

11. θ(4n4)

• 4n4

12. θ(44n)

• 44n

13. θ(55n)

• 55n
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Selected Proofs

- lim
n→∞

nn/4

5n
= ∞

L.H.S = lim
n→∞

(
n1/4

5

)n

= ∞∞ = ∞ (1)

- lim
n→∞

5n

nln n
= ∞ note change in logarithm’s basis is legitimate as different bases are

proportian by constant factors.

Observe

5n

nln n
= eln( 5n

nln n ) (2)

= en ln 5−ln n·ln n (3)

But

lim
n→∞

n ln 5 − ln n · ln n = lim
n→∞

n(ln 5 − ln2n

n
) (4)

= ∞ ·
(

ln 5 − lim
n→∞

ln2 n

n

)
(5)

= ∞ · (ln 5 − 0) (Applied L’Hôpital Twice) (6)
= ∞ (7)

Substituting back in (2),

lim
n→∞

5n

nln n
= lim

n→∞
en ln 5−ln n·ln n (8)

= elimn→∞ n ln 5−ln n·ln n (9)
= e∞ = ∞ (10)

- lim
n→∞

4n4

nn/4 = ∞ We prove lim
n→∞

nn−3/4 = 1.

Observe

nn−3/4 = eln nn−3/4 = e(n−3/4) ln n (11)
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By L’Hôpital

lim
n→∞

(n−3/4) ln n = 1
4 lim

n→∞

1
2n2 = 0 (12)

Therefore

lim
n→∞

nn−3/4 = lim
n→∞

e(n−3/4) ln n = elimn→∞(n−3/4) ln n (13)

= e0 = 1 (14)

With that in our disposal we conclude

lim
n→∞

4n4

nn/4 = lim
n→∞

(
4/(nn−3/4)

)n4

=
(

4/( lim
n→∞

nn−3/4)
)∞

(15)

= (4/1)∞ = ∞ (16)

Ex. 1.2
a

g(n) = 5n = θ(n1), logb a = log4 4 = 1.

Case 2 of Master theorem applies for k = 0, where θ(nlog4 4 log0 n) = θ(n1) = g(n).

Thus, T (n) = θ(n1 log1 n)

b

a = 4, b = 5, g(n) = 5n = O(n1) = O(nd).

logb a = log5 4 < log5 5 = 1 = d.

T (n) = O(n1)

c

g(n) = 4n, logb a = log4 5 > log4 4 = 1.

Case 1 of Master theorem applies. Set ϵ = log4 5 − log4 4. So ‰(nlog4 5−ϵ) = θ(n1) =
4n = g(n).

Thus, T (n) = θ(nlog4 5)
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d

g(n) = n2, logb a = log5 25 = 2.

Case 2 of master theorem applies for k = 0, where θ(nlogbalog0n) = θ(n2) = n2.

Thus, T (n) = θ(n2 log1 n)

e

g(n) = log2 n, logb a = log5 4 < 1.

Case 1 of master theorem applies. Fix any ϵ where 1 > ϵ > 0. Then O(n1−ϵ) = log2n.

Thus, T (n) = θ(nlog54)

f

a = 4, b = 5, g(n) = lg5 n
3
2 = O(n1) = O(nd).

logb a = log5 4 < log5 5 = 1 = d.

Thus, T (n) = O(n1)

g

Observe the pattern of expansion

T (n) = 4T (n 1
2 ) + lg5 n

= 41
(
4T (n

1
22 ) + lg5 n

1
21
)

+ lg5 n1

= 42T (n2−2) + 41 lg5 n2−1 + 40 lg5 n20

= 42
(
4T (n2−3) + lg5 n2−2)+ 41 lg5 n2−1 + 40 lg5 n20

= 43T (n2−3) + 42 lg5 n2−2 + 41 lg5 n2−1 + 40 lg5 n20

= . . .

= 4kT (n2−k) + 4k−1 lg5 n2−(k−1) + · · · + 42 lg5 n2−2 + 41 lg5 n2−1 + 40 lg5 n20

= 4kT (n2−k) + lg5 n
(
2k−1 + 2k−2 + · · · + 20

)
= 4kT (n2−k) + lg5 n(2k − 1)

The final form can be trivially proven.

Seting n2−k = 2 yields through basic algebra k = lg lg n.

T (n) = 4lg lg nT (n2− lg lg n) + lg5 n(2lg lg n − 1)
= 4lg lg nT (2) + lg5 n(2lg lg n − 1)
= C04lg lg n + 2lg lg n lg5 n − lg5 n = θ(2lg lg n lg5 n) QED
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As a bonus we assure the reader lim
n→∞

2lg lg n lg5 n

4lg lg n
= ∞.

= (1/2)lg lg n lg5 n

= eln(1/2)lg lg n · eln lg5 n

=
(
elg lg n

)ln 1
2 ·
(
elg lg n

) ln lg5 n
lg lg n

=
(
elg lg n

)ln 1
2 + ln lg5 n

lg lg n

Now we compute lim
n→∞

ln lg5 n

lg lg n

= lim
n→∞

ln lg5 n

lg lg n

= lim
n→∞

5
n ln n

1
n ln 2 lg n ln 2

L’Hopital, Chain Rule, Logarithm rule

= lim
n→∞

ln 32 Algebraic simplification

= ln 32

It is easy to see now

lim
n→∞

(
elg lg n

)ln 1
2 + ln lg5 n

lg lg n = lim
n→∞

elg lg n·
(

ln 1
2 + ln lg5 n

lg lg n

)

= e
lim

n→∞
lg lg n ·

(
ln 1

2 + ln lg5 n

lg lg n

)

= e∞·(ln 1
2 +ln 32)

= e∞∞

h

Similar to g

i

Observe the pattern of expansion

T (n) = T (n
1

21 ) + 5
= T (n

1
22 ) + 5 + 5

= . . .

= T (n
1

2k ) + 5k
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The final general form can be trivially proven by induction.

Setting n
1

2k = 2 yields k = log2 log2 n through basic algebraic manipulations.

T (n) = 5 log2 log2 n + T (n
1

2log2 log2 n )
= 5 log2 log2 n + T (2)
= 5 log2 log2 n + C0 C0 is a fixed constant
= θ(log2 log2 n)

j

Solved by Akra-Bazzi.

We find p such that 12p + 25p + 110p = 1, Which turns to be −1.

T (n) = θ
(

n−1
(

1 +
∫ n

1

4u

u−1+1 du
))

= θ
(
n−1

(
1 + 2u2|n1

))
= θ

(
n−1

(
2n2 − 1

))
= θ(n)

Prob. 1.1
a

Consider a graph of vertices v1, v2, v3, whose weights are correspondingly 10, 6, 6, and
connected by edges {v1, v2}, {v2, v3}.

The optimal subset is v2, v3 of profit sum equal to 6 + 6 = 12, But the algorithm picks
subset v1 with profit 10.

b

Since the graph is given to be acyclic, Each neighbour of the graph’s root, Constitutes a
root of a subtree of its own, with no vertex being shared among any two subtrees.

We design a divide and conquer algorithm where solutions to smaller subtrees can be
merged for a larger subtree.

The base case is when the tree has only one vertex, where optimal subset contains only
that vertex.

Assuming we know solutions of subtrees, How can we merge? Observe the optimal
subset of the whole tree either

• (1) Contains the root
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• (2) Does not contain the root

For (2), The optimal solution of the whole tree is the sum of all subtrees’ optimal profits.
Assume for the sake of contradiction that is not the case. Then there are different
selections of vertices with overall greater profit. Since by definition we are assuming
whole tree’s root to be excluded, We know the different selection is in one of the subtrees.
We know also that subtree’s new total profit is greater, But that contradicts the fact
subtree is given optimal in the first place to us.

For (1), The tricky part comes into play. If we restricted our scope only on a subtree,
Then It is possible to choose a non-optimal subset, As it shall be better integrated with
the bigger subtree, Yielding a greater profit for the bigger subtree. Particularly, That
happens if we had to include the new root in the subset and exclude the subtree’s root.

The key is to have this information given to us by the main algorithm. So we let it
compute also optimal possible profit under the assumption root is excluded. With that
in our pocket we can compute the whole big tree’s optimal subset profit assuming it
contains the root.

Specifically, we loop on each given subtree and check whether root is included in optimal
solution. If not, we add subtree’s optimal profit. If yes we add subtree’s optimal profit
under the assumption subtree’s root is excluded.

Finally we select the maximum of case (1) and case (2) and return it as the optimal
solution.

Observe we have covered all possible cases by such a simple trick!

Example

Black number indicates profit of a single vertex, and red is the optimal profit of the
vertice’s subtree.

For the first tree, Case (1) is maximum, and for the second tree, Case (2) is maximum.
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Psuedo Code

optimalSubsetProfit(tree G, tree root v_r)
if (verticesNumber(G) == 1)
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return (True, profit(v_r), profit(v_r))

subtreesOptimalData = ()

for v_neig in neighbours(v_r)
out = (optimalProfit, isRootIncluded, profitRootExcluded) = optimalSubsetProfit(subtree(v_neig), v_neih)
subtreesOptimalData.append(out)

profitRootExcluded = 0
for subtree in subtreesOptimalData

profitRootExluded += subtree.optimalProfit

profitRootIncluded = 0
for subtree in subtreesOptimalData

if subtree.isRootIncluded == False
profitRootIncluded += subtree.optimalProfit

else
profitRootIncluded += subtree.profitRootExcluded

optimalProfit = max{profitRootExcluded, profitRootIncluded}
if optimalProfit == profitRootExcluded

isRootIncluded = False
else

isRootIncluded = True

return optimalProfit, isRootIncluded, profitRootExcluded

c

Remark Stacks’ Vertices Number

Think of the given graph as levels of stacks from bottom to top as shown below
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Observe the number of vertices in a stack must be equal or greater than the number of
its preceeding stack. So, final stack of leafs is the greatest.

Algorithm Description

• Include the bottom most stack in solution subset.
• Ignore the preceeding stack, As every vertex in it is adjacent to some selected

vertex.
• Include the preceeding stack in solution subset.
• Continue similarly untill the whole graph is covered

By alternatively toggling between stacks, We ensure no adjacent vertices are selected,
and we greedily select stacks of greatest number of vertices.

Psuedo-code

optimalProfit(tree G, tree's root v_r)

if G contains one vertex
return (True, 1)
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someChildIncluded = False
count = 0

for each child v_chi of root v_r
(isChildIncluded, childCount) = optimalProfit(G, v_chi)

if isChildIncluded == True
someChildIncluded = True

increase count by childCount

if someChildIncluded == True
return (False, count)

else
return (True, count+1)

Complexity log(n)

Proof

Theorem. 1 If the given graph contains only vertices with at most 1 child branch,
Then the algorithm selects maximum number of valid vertices.

Note the graph in this case is basically a linear path of vertices. Note also the number
of vertices selected by our algorithm is ⌈n

2 ⌉, where n is the number of graph’s vertices.

It sufficies to show if there is any selection subset U whose number of vertices is more
than ⌈n

2 ⌉, Then U contains two adjacent vertices. The proof is by induction on n.

The base case of n = 2 is trivial. Assume the statement holds for k ≥ 2, and consider
an arbitrary graph G where n = k + 1.

Consider an arbitrary X ⊆ G(V ) with vertices number at least ⌈k+1
2 ⌉ + 1. Our goal now

is to prove the existince of two adjacent vertices in X. By removing a leaf from G we
obtain a graph G′ whose number of vertices is n′ = n − 1 = k + 1 − 1 = k. Define X ′ to
be X ∩ G′(V ). Observe X ′ contains at least ⌈k+1

2 ⌉ + 1 − 1 = ⌈k+1
2 ⌉ = ⌈k

2⌉ + 1 vertices.
By the induction hypothesis it follows X ′ contains two adjacent vertices, And so does
X.

Definition. 1 multiLinearLeafsParent and branchPath

For any vertex v, If all its child generations have degree at most 2, Then we call it
multiLinearLeafsParent. Note on any branch l, Vertices constiute a linear path from v
and upto the leaf. We call that path branchPath(v, l).

Lemma. 1

If a vertex v contains more than one branch for children, and it is multiLinearLeafsParent,
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Then

• 1.1 If for any branches l, The length of branchPath(v, l) is odd, Then v is selected
by the algorithm.

• 1.2 If for some branch l, The length of branchPath(v, l) is even, Then v is ignored
by the algorithm.

Lemma. 2 If the given graph contains a vertex with more than 2 child branches, and a
new graph G′ is constructed by removing either

• (1) Two bottom most vertices from odd length branchPath l0, or
• (2) One leaf from an even length branchPath,

From some vertex v0 which has at least two branches, Then the algorithm’s selections
on G′, are also selected on G.

Select that given vertex which has more than 2 child branches, and call it v0. Call its
branches l1, l2, . . . , lm.

For case (1), The new pruned branch is still of odd length. It is fine if the branch is
completely removed also. Since parity of branches are reserved, By Lemma. 1, the
algorithm makes the same choice on v0 for both G and G′ graphs.

Note in case the branch is completely removed, Then the choice on v0 is totally dependent
on other branches. If there is another even length branch then ignoring v0 is reserved
on G′; If all branches are of odd length then selecting v0 is reserved also. All these cases
follow by Lemma. 1.

For case (2), We know there is another even length branch in G′, and by Lemma. 1, the
algorithm ignores v0 on both G and G′ graphs.

Theorem. 2 If the given graph contains a vertex with more than 2 child branches,
Then the algorithm selects maximum number of valid vertices.

The proof is by strong induction. The base case of n = 3 vertices is trivial (if you are
super nerd, for n less than 3, It is vacuously true). Assume the statement holds for
k ≤ p where p ≥ 3, and consider arbitrary graph where number of vertices n is k + 1.

Call the count the algorithm produces p. Assume for the sake of contradiction there is
a valid selection X of vertices with count at least p + 1.

Select that given vertex which has more than 2 child branches promised by the theorem’s
hypothesis, and call it v0. Call its branches l1, l2, . . . , lm.

We are ahead of two cases

• (1) For some branch l0, length of branchPath(v0, l0) is odd
• (2) For any branch li, length of branchPath(v0, li) is even
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For (1), Construct a new graph G′ where the two bottom most vertices are removed
from l0.

Note existince of at least 2 vertices along the branch is ensured by the definition of
branch’s existince; There is no odd branch of path length equal to 1.

Note also exactly one vertex of the selected two vertices is in X, The optimal selection
of G, As the two vertices are adjacent.

By Lemma. 2, Selections made on G′ are exactly the same as selections made on G by
the algorithm, Except on G there is an additional leaf selected. So selections number
p = p′ + 1.

Define X ′ = X ∩ G′(V ). At most one vertex selected by the algorithm on G is in X
but not in X ′. So X ′ has at least p + 1 − 1 = p vertices. But we have just established
p = p′ + 1, Thus X ′ has at least p′ + 1 vertices.

Number of vertices in G′ is n − 2 = k + 1 − 2 = k − 1. By the induction hypothesis, p′,
The number of selections made by the algorithm, is the greatest valid solution for G′.

Contradiction, as X ′ is a valid solution for G′.

For (2), We fix some branch l0 and construct a new graph G′ where leaf of l0 is removed.

By a very similar reasoning a contradiction is reached.

Corollary. 1 The algorithm produces a the maximum number of selections, Generally

Follows immediately by theorem 1 and theorem 2.

d

Remark Redundant Subproblem
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If considered the subset marked by a red rectangle, We notice we are left with exploring
remaining search space of v1, v2. We see two different subsets with the same search
subspace, Which is redundant. Moreover, The left subset’s profit is 9 while the right
subset’s profit is 10. So we can safely assure the right subset is yielding a better solution.

This observation clearly suggests an algorithm based on dynamic programming. It also
suggests a subproblem defined in terms of profit and remaining graph vertices.

Table

Our algorithm is initialized on row = 0 and maxRowProfit = 0

Algorithm Description

For each row, we loop on all remaining graph subsets alongside their memoized profits.
Then for the remaining graph selected, and for each vertex of it, We sum its profit to
previous total profit and remove the vertex from remaining graph, to generate a new
solution.

Psuedo-code

optimalProfit(row, maxRowProfit)
if row == n

return maxRowProfit
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maxNextRowProfit = -1

for each ith profit of table[row, ]
for each vertex v of ith graph subset

totalProfit = profit + v.profit
remGra = removeAdj(ith graph subset, v)

if table[row+1, remGra] < totalProfit
table[row+1, remGra] = totalProfit

if table[row+1, remGra] > maxNextRowProfit
maxNextRowProfit = totalProfit

if maxNextRowProfit == -1
return maxRowProfit

optimalProfit(row+1, maxNextRowProfit)

Note the algorithm can be trivially extended to output the solution subset by outputting
G(V ) - remGra, where remGra is the last remaining graph found by the algorithm.

Prob. 1.2
a

Maximum distance between two requests ri and rj is
√

(1/2)2 + (1/2)2 =
√

1/4 + 1/4 =
1
√

2 ≤ 1

b

Algorithm Description
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Recursively the algorithm divides requests into nine sub problems. The first four calls
cover all requests, but we also need to check a subproblem between each pair of those
four. The base case is when the square length is 1/2, and if two requests are within the
square, Then the algorithm terminates as given requests are not valid.

It is not hard to see why those calls between each pair of the first four are necessary
and sufficient to merge.

We don’t see a need for specifying a psuedo-code (and my time is limited to write all
details).

c

Exactly the same as b but on the base case, The algorithm checks whether there are
three requests within the square.
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