
Problem Set 04

Mostafa Touny

Contents
Exercises 2

Ex. 1 . 2
Ex. 2 . 2
Ex. 3 . 2
Ex. 4 . 2
Ex. 5 . 3
Ex. 6 . 3
Ex. 7 . 3
Ex. 8 . 3

Problems 3
Prob. 1 . 3

a . 4
b . 4
c . 5
d . 5

Prob. 2 . 5
a . 5
b . 6
c . 6
d . 6

1

Exercises

Ex. 1
done

Ex. 2
The amortized cost of n operations is upper-bounded by

n +
⌊lg n⌋∑
i=1

2i

= n + 2(1 − 2⌊lg n⌋)
1 − 2

≤ n + 2(1 − n)
−1

= n − 2 + 2n

= 3n − 2
= O(n)

So the amortized cost of one operation is O(n)
n = O(1).

Ex. 3
We assign the following amortized costs:

• ith operation isn’t a power of 2 → 4
• ith operation is an exact power of 2 → 0

We prove for each operation 2i, There’s a sufficient balance for it. For i ≥ 2, There
are exactly 2i−1 − 1 non-power operations before 2i and after 2i−1. It sufficies to show
4(2i−1 − 1) ≥ 2i which can trivially be proven by induction.

Observe amortized cost = 4n − 4⌊lg n⌋ ≥ n − ⌊lg n⌋ + 2n ≥ n − ⌊lg n⌋ + ∑⌊lg n⌋
i=1 2i =

actual cost. Note by the geometric series ∑⌊lg n⌋
i=1 2i = 2(1 − 2⌊lg n⌋)

1 − 2 ≤ 2n

The amortized cost of n operations is O(n), and hence the amortzed cost of one operation
is O(1).

Ex. 4
Define potential function Φ(Di) to be the number of 1-bits in the binary representation
of i. Note Φ(D0) = 0 and Φ(Di) ≥ 0 which suffices to show the validity of our definition.

2

Observe the amortized cost of operations:

c′
i =


i + 1 − i = 1, i is a power of 2
1 + 1 = 2, if i is odd
1 + ∆Φ(Di) ≤ 1, if i is even but not power of 2

 (1)

When i is odd, it has one additional 1-bit over even i-1, due to the right most bit being
only flipped from 0 to 1. When i is even, then i-1 is odd, and at least one 1-bit is flipped
to zero and at most one 0-bit is flipped to 1. So ∆Φ(Di) ≤ 0. When i = 2k, a power
of two, then Φ(Di) = 1 because there’s exactly one 1-bit. Also, i-1 contains exactly i
1-bits, So Φ(Di−1) = i.

In all cases, the amortized cost of a single operation is O(1).

Ex. 5
done

Ex. 6
Each element of the array needs to be compared with the pivot only once to conclude
whether it is greater or less than it.

Ex. 7
Since 0 < α ≤ 1

2 branching 1 − α is greater or equal than branching α. Maximum depth
is lg 1

1 − α
n = lg n

lg 1
1 − α

= lg n
lg 1 − lg(1 − α) and minimum depth is lg 1

α
n = lg n

lg 1
α

=

lg n
lg 1 − lg α . The fact lg 1 = 0 concludes the intended result.

Ex. 8
Failed to solve.

Through the same reasoning of establishing upper-bound, we derived a lower-bound of
Ω(lg n).

Problems

Prob. 1
The obvious FIFO queue satisfies the problem’s requirements. Think of a list of numbers
where integers are enqueued to left and dequeued from right.

3

A list.min variable is maintained whenever a new integer is added, Checking whether
it’s less than list.min and updating accordingly. Whenever dequeue is called, we check
whether removed integer is equal to list.min. If not, no additional work is done. If yes,
we know by the distinctness of integers, that the list.min is removed from the list, and
hence it must be updated. A linear scan is implemented to update list.min.

While the worst-case analysis of dequeue is linear, That worst case of removing the
list.min happens in proportion to the number of integers enqueued, which in turn allows
us to conclude an amortized cost of O(1).

The central key idea is to loop only once on each element, from left to right, storing
in each element.min, The minimum integer of the sub-array starting from left-most to
current element’s position. Now whenever we need to loop again to find list.min, We do
not loop on already-visited elements, but only on newly inserted elements. We assign
list.min to be the minimum integer of that new sub-array. Observe we can conclude the
minimum of the whole list, from list.min and right-most element.min stored in visited
elements. It’s basically min(list.min, element.min).

We continue in this manner untill all visited elements are dequeued. Then we are left
with a list of totally no visited elements, and list.min is the minimum integer of the
whole list.

a

• element contains int holding the integer value and min storing the minimum
element of a sub-array.

• list contains min indicating the minimum integer of the unstamped sub-array.
That, besides elements aforementioned.

b

• minAllElements Loop from left to right on the whole list, Maintaining the
minimum of the sub-array from left-most to currently visiting element, and storing
it in each element.min. Reset list.min to +∞ so that it considers only newly
inserted elements.

• Enqueue Append element to the left of the list. If it’s less than list.min, Update
list.min to it.

• Find-Min
– (1) No element is visited in a minAllElements call before.

∗ return list.min.
– (2) Some elements are visited in a minAllElements call before.

∗ return min(list.min, element.min), where the element here is the right-
most one.

• Dequeue Assign localMin=Find-Min(), and remove the element. For case (1), if
removed element is equal to localMin, minAllElements is called.

4

c

We skip a proof by invariance is it seems unnecessarily. We believe our discussion suffices
to convince the reader our design covers all cases.

d

Trivially, Enqueue and Find-Min are O(1), and minAllElements is θ(n). Dequeue’s
worst-case is θ(n) due to the call of minAllElements. So, m operations are upper-bounded
by ω(m2).

The goal now, by the accounting method, is to show we can pay minAllElements by an
amortized cost of 2 for Enqueue. Note we cannot visit an element unless it’s enqueued.
We already discussed each element is going to be visited by minAllElements at most
once, Hence the additional credit for each element accommodates the payment.

Now we have all desired operations to have an amortized cost of O(1), and a sequence
of m operations costs O(m).

Prob. 2
a

The event is logically equivalent to, assuming xi is not the pivot the next recursive call
containing xi has a subarray of size at most 3m/4.

Consider the array’s elements ordered as q1 < q2 < · · · < qm. There are three cases for
which the event occurs:

• (i) The pivot z ∈ {⌈m/4⌉, . . . , ⌊3m/4⌋ + 1}. Then xi is always in a subarray of
size at most 3m/4.

• (ii) z ∈ {1, . . . , ⌈m/4⌉ − 1}, and xi is in the left subarray.

• (iii) z ∈ {⌊3m/4⌋ + 2, . . . , m}, and xi is in the right subarray.

We ignore (ii) and (iii) and prove (i) concludes the desired lower-bound of probability
1/2.

Since the pivot is randomly selected, we know the probability of qi being the pivot is
1/m. There are exactly ⌊3m/4⌋ + 1 − ⌈m/4⌉ + 1 elements. So the probability is:

5

≥ 1
m

(
⌊3m

4

⌋
+ 1 −

⌈
m

4

⌉
+ 1)

≥ 1
m

(3m

4 − m

4)

= 1
m

· m

2 = 1
2

b

Assume the algorithm lasted for iteration 3(2 + 1
log2 4/3) log2 n = 3(α + c) log2 n. By

the instructor’s claim and exercise a, We know the array size is reduced by a factor of
at most 3m/4 for at least 1

log2 4/3 log2 n = log4/3 n times. Thus the array size is at
most n

(4/3)lg4/3 n = 1 and the algorithm terminates. Therefore with probability at least

1 − 1
n2 , The number of comparisons is logarithmic for d ≤ 3(2 + 1

log2 4/3).

c

Definition 1. Let ki denote the event, that the total comparisons of xi with pivots is
at most d lg n.

Lemma 2. prob[¬k1 ∨ ¬k2 ∨ · · · ∨ ¬kn] ≤ 1
n .

Immediately follows by the fact prob[¬ki] = 1
n2 and the union bound. Note 1

n2 + · · · +
1
n2 = n 1

n2 = 1
n

Corollary 3. prob[k1 ∧ · · · ∧ kn] ≥ 1 − 1
n

The event is the logical negation of the event in lemma 2. Hence prob[k1 ∧ · · · ∧ kn] =
1 − prob[¬k1 ∨ ¬k2 ∨ · · · ∨ ¬kn] ≥ 1 − 1

n .

d

The procedure of c yields probability 1 − 1
nα−1 = 1 − 1

n1 from α = 2 in b. But the
procedure of b is general enough, So we can select any α instead of just α = 2. In other
words, For any α we can set α + 1 in b and get the desired probability bound.

6

	Exercises
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	Ex. 5
	Ex. 6
	Ex. 7
	Ex. 8

	Problems
	Prob. 1
	a
	b
	c
	d

	Prob. 2
	a
	b
	c
	d

