
Problem-Set 05

Mostafa Touny

November 28, 2022

Contents

Exercises 2
Ex. 1 . 2
Ex. 2 . 2
Ex. 3 . 3
Ex. 4 . 4
Ex. 5 . 4
Ex. 6 . 4
Ex. 7 . 4
Ex. 8 . 5

Problems 5
Prob. 1 . 5
Prob. 2 . 10

1

Exercises

Ex. 1

done

Ex. 2

Definition. 1 coll, p[coll]
We denote by coll the collision event of f(k1) = f(k2) for fixed k1 ̸= k2, and by p[coll]
the probability of that event happening.

Definition. 2 {fcoll−i,j}
We denote all functions with a collision on i, j ∈ U by {fcoll−i,j}

Note. 3 It’s explicitly assumed

1. (i) The given hash family H contains all possible functions f : U → B.

2. (ii) for any fixed i and j, f(i), f(j) ∈ {0, . . . , |B| − 1} are independently and
randomly assigned.

We are not aware whether these properties are part of a hash’s family definition.

Lemma. 4 For a family of functions H whose functions are defined on f : U → B,

p[coll] = 1
|B|

For a fixed k ∈ B, |{fcoll−i,j|f(i) = f(j) = k}| = |B||U |−2 To see why, Think of f(ki)
and f(kj) as a fixed determined values; As a deferred choice, how many choices we have
for f , for the remaining of |U | − 2 elements?

Considering all xi ∈ {0, . . . , |B| − 1} for f(ki) = xi = f(kj), |{fcoll−i,j}| = |B||U |−2 +
· · ·+ |B||U |−2 = |B| · |B||U |−2 = |B||U |−1.

Finally,
|{fcoll−i,j}|

|H| =
|B||U |−1

|B||U | = 1
|B| . The result is concluded, recalling a function is

drawn randomly from H.

Corollarly. 5 If p[coll] ≤ ϵ, Then ϵ ≥ 1
|B| .

Theorem. 6 If p[coll] ≤ ϵ, Then ϵ ≥ 1
|B| −

1
U .

Note ϵ ≥ 1
|B| −

1
U is equivalent to |B||U |ϵ + |B| ≥ |U | by trivial algebraic operations.

It immediately follows from lemma 4, |B||U |ϵ + |B| ≥ |B||U | 1
|B| = |U | + |B| ≥ |U |,

since |B| > 0.

2

Ex. 3

done

Ex. 4

14.3.3

Fact. 7 Trees’ Keys
Keys of the tree are keyed on low endpoints. i.e nodes on the left subtree have low
endpoints less than the root’s low endpoint and nodes on the right subtree have greater
low endpoints.

Definition. 8 Goodness
By an optimal-interval we mean an overlapping one with the lowest low endpoint. We
say some interval is better when its low endpoint is strictly lower.

Lemma. 9 No better-interval on the right subtree.
If any search algorithm terminated upon finding an overlapping interval x, Then for
any other overlapping interval on the right subtree, Its low endpoint is going to be at
least equal to x’s low endpoint. That due to Fact 1.

Observation. 10 Possible better-intervals on the left subtree.
For node x whose interval overlaps with the queried interval i, The possible existince
of a better-interval on the left subtree is justified by verifying x.left.max to be at least
i.low, and Fact 1.

Corollary. 11 If x.left.max is less than queried i.low, Then the found overlapping
interval in x is the optimal.

Tinkering Search Algorithm. The previous discussion suggests a simple modification
to solve our problem. The algorithm maintains a variable bestInterval, Updating it
whenever a better overlapping interval is found. If the algorithm found an interval, and
x.left.max is less than i.low, It terminates. If x.left.max were at least i.low, It steps
to left subtree.

INTERVAL-SEARCH(T, i)

bestIntervalNode = nil

x = T.root

while x != T.nil

if i overlaps with x.int and x.int is better than bestIntervalNode

bestIntervalNode = x

if x.left != T:nil and x.left.max >= i.low

3

x = x.left

else

if bestIntervalNode == nil

x = x.right

else return bestIntervalNode

return bestIntervalNode

Ex. 5

done

Ex. 6

In Memoized-Cut-Rod, Initalize a new binary array c[0..n− 1] where c[i] = 1 if there’s
a cut at the ith possible cut position. In Memoized-Cut-Rod-Aux, While computing the
maximum q in i’s loop, store i0 value which corresponds to the maximum q. Then set
c[i0] = 1.

Ex. 7

15.2.4 postponed

Ex. 8

Definition. 1 Less-order Sequence
A sequence A is less-order than sequence B if A is less in terms of the lexicographical
order. For example, A C B is less-order than A D A.

Remark. 2 Misleading Equal Character
Consider sequences A = 1 9 2 5 1 3 4 and B = 1 9 2 6 1 3 4. On A2 = 1 9 and B2 = 1 9,
We have a subsequence 1 9. But since 9 is a huge number we can’t append subsequence
2 3 4. In fact the optimal subsequence of A and B is 1 2 3 4. Our algorithm must
prefer less-order subsequences as they enable better chances of a longer subsequence.

Approach. 3 Same but tinkered
Following exactly the same formulation and solution mentioned in CLRS but with a
simple tinkering:

� A new character appended to a subsequence must be monotonically increasing.
Otherwise the subsequence is passed as it is without appending the new character.

� if two subsequences collided in the same memoization-table entry, the less-order
one is preferred.

4

Example. 4
A = 1 9 2 5 1 3 4
B = 1 9 2 6 1 3 4

� Entry c[2,2] prefers 1 2 over 1 9.

� Entry c[4,4] does not append 1 conforming to the monotonic increase condition.

Note. 5
We rely on our intuition without rigorously proving the correctness of our solution.

Problems

Prob. 1

a

We donte with high probability by w.h.p. As instructed in lectures, Proofs here are
identical to them but on the case of nodes m rather than all n nodes. We follow the
same assumptions. Namely, Total number of moves is, Moves until all head tosses
(upward moves) are consumed.

Finger-Search Algorithm

We define:

� curN, As currently pointed node

� N.r, As the right node of node N

� N.d, As the downward node of node N

5

� N.u, As the upward node of node N

� N.l, As the left node of node N

� N.key, As the key of node N

Finger-Search(x,k)

curN = x

while curN.key != k:

if (curN.u != NULL) AND (curN.u.r.leftCount + counter <= k), then curN = curN.u

else if curN.r.key <= k, then curN = curN.r

else curN = curN.d

Recall we are assuming a successful search, so the case of finding a key greater than k
while we are in level-0 is impossible. So is the case of reaching +inf. So we omit those
validations.

Height

Lemma. 1 The height, i.e maximum node’s upward levels, is bounded by c lgm w.h.p

Pr[no node’s height ≤ c lgm] = 1− Pr[some node’s height > c lgm]

Pr[some node’s height > c lgm] ≤ m · Pr[node x height > c lgm] union bound

≤ m ·
(
1

2

)c lgm

= m · (2lgm)−c = m ·m−c =
1

mc−1

=
1

mα ,where α = c− 1

Pr[no node’s height ≤ c lgm] = 1− 1

mα QED

Lemma. 2 For every height c lgm there is a total number of moves d lgm such that
c lgm head tosses (upward moves) appears within the d lgm moves w.h.p

Clearly, If we knew the maximum height of any node is c lgm, then the height of given
node x is upper-bounded by it.

As given in the lecture, We use Chernoff’s bound as our hammer:

Pr[Y ≥ E[Y] + r] ≤ e
−2r2
m

Observe among d lgm total tosses, The following are equivalent:

� ≥ c lgm heads w.h.p.

6

� < c lgm heads is bounded.

� ≥ d lgm− c lgm tails is bounded

Let Y denote the number of tails. Note Ex[Y] =
d lgm
2 by linearity of expectation, and

set r = (d/2− c) lgm. Thus,

Pr[Y ≥ d lgm

2
+ (d/2− c) lgm] ≤ e

−2(d/2− c)2 lg2m
d lgm

Pr[Y ≥ (d− c) lgm] ≤ e−9/4·c·lgm, Setting d=8c

≤ (2lgm)−c, As e > 2 and 9/4 > 1

=
1

mc

Therefore Pr[≥ c lgm heads] = 1 - 1
mc QED

b

We begin by augmenting node with data additional to mentioned ones in a. Namely,
n.leftCount which denote the number of nodes additional to node n.l upto current n.
Note the number considers all nodes in level-0.

For Search, Clearly augmenting new data on nodes do not influence the number or
order of nodes in the skip list. So nothings needs to be done to prove the complexity is
maintained.

For Insert and Delete, n.leftCount of some nodes must be updated. Those nodes are
exactly characterized by the same line of reasoning mentioned in the lecture and in a.
If Search is getting from a top-left node to some level-0 node, Then Reversed-Search is
getting from a level-0 node to some top-right node. Nodes along that path are exactly
the ones which need update. The proofs are identical to a. For the sake of brevity we
omit them here and invite the reader to observe the following diagrams as a convincing
evidence.

7

8

c

Compute-Rank(x)

curN = x

counter = 0

while curN != -inf:

if curN.u != NULL, then curN = curN.u

else counter = counter + curN.leftCount; curN = curN.l

return counter

Rank-Search(x,r)

counter = Compute-Rank(curN)

while counter != r:

9

if (curN.u != NULL) AND (curN.u.r.leftCount + counter <= k), then curN = curN.u

else if curN.r.leftCount + counter <= k, then curN = curN.r

else curN = curN.d

return curN

Again, As we assume a succesful search we do not check the cases of +inf and stepping
downward while being in level-0.

Again, Proofs are identical to a and they are omitted for brevity.

Prob. 2

For the sake of brevity we only show the optimal-substructure and memoization-table,
Whereby the algorithm should be clear enough.

a

Optimal Substructure

maxSeq(< p1, . . . , pn >,m) = max

{
maxSeq(< p1, . . . , pn−1 >,m− 1) + pn
maxSeq(< p1, . . . , pn−1 >,m)

}

Memoization Table

ith column denote the consideration of prizes p1, . . . , pi, and ith row denote exactly i
prizes.

Since prizes’ values are non-negative, table[m,n] is the answer.

Complexity

Both time and space complexity are O(nm)

10

b

Remark

Observe the given sequence S and the optimal-subsequence OptS can both be divided
into two segments, S1, S2 and OptS1, OptS2, where OptS1 is a subsequence of S1 and
OptS2 is a subsequence of S2.
But neither do we know where exactly S is divided nor how many prizes are devoted
to blues and reds. The solution is basically to brute-force all possible cases and apply
(a) to solve a single case.

Optimal Substructure

maxSeq(< p1, . . . , pn >,m) =

max0≤i≤n, 0≤j≤m {maxSeq(< p1, . . . , pi >, j) ·maxSeq(< p1, . . . , pn−i >,m− j) }

Where ’·’ denotes a concatenation.

Complexity

Time is nm · O(nm) = O(n2m2). Space is the same as (a).

c

Remark

We can think of this problem as a generalization of (b) where the precedence of Reds
over Blues is equivalent to prizes pi being all less than some prize p0. This is the crux
of our solution.

We introduce a trick to colour prizes. Pick-up some arbitrary prize p0 and colour and
all prizes pi < p0 blue and all prizes pi ≥ p0 red. Call it prizes-colouring.

Recursively apply prizes-colouring and (b) on the given sequence S. Note the base case
is the same as (b), where a sequence consists only of prizes of an equal value.

The justification is clear since we are brute-forcing all possible cases.

Complexity

On average we expect the recursion to count log n iterations. The worst case is n. So
we have time n · O(n2m2) = O(n3m2), and space same as (a).

d

11

	Exercises
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	Ex. 5
	Ex. 6
	Ex. 7
	Ex. 8

	Problems
	Prob. 1
	Prob. 2

