
Problem-Set 06

Mostafa Touny

December 29, 2022

Contents

Exercises 2
Ex. 1 . 2
Ex. 2 . 2
Ex. 3 . 2
Ex. 4 . 2
Ex. 5 . 2
Ex. 6 . 3

Problems 3
Prob. 1 . 3
Prob. 2 . 5

1

Exercises

Ex. 1

skipped in hope of professionally read while solving the exercises, and well-gain from
lectures.

Ex. 2

To definte shortest-path weight function δ, which satisfies the triangle inequality, enabling
the second property of w.

Ex. 3

For a cycle c = v0, v1, . . . , vk = v0 we are given w(c) = 0. It is natural to ignore the
case k = 0.

Recall the facts

1. w(u, v) ≥ 0

2. w(u, v) = w(u, v) + h(u)− h(v)

3. w(p) = w(p) + h(v0)− h(vk) for path p

Lemma. 1 Σw(vi, vi+1) = 0

w(c) = w(c) + h(v0)− h(vk)

= 0 + h(v0)− h(v0), v0 = vk

= 0

If any w(vi, vi+1) > 0 then w(c) > 0, contradicting the proved above lemma.

Ex. 4

skipped in hope of professionally read while solving the exercises, and well-gain from
lectures.

Ex. 5

In page 636 there is a hint of using fibonacci-heabs. I am not sure whether it is the key
of solving the problem. Anyway, The exercise is postponed untill we gain a guidance
from others. Skimming the chapter did not yield any promising clue to pursue.

2

Ex. 6

Same as Ex. 5

Problems

Prob. 1

a

Case r = wi,j. Nothing to be done.

Case r < wi,j. Check to see if new paths including edge (i, j) offer less-weight.

(For LaTeX issue we denote matrix Π by P)

for x = 0 to n

for y = 0 to n

if d_x,i + r + d_j,y < d_x,y

d_x,y = d_x,i + r + d_j,y

P(x,j) = i

P(x,y) = P(j,y)

Observe Π(x, i) is the same, and same for its recursive vertices. Similarly to Π(j, y).

Complexity. O(V 2)

Case r > wi,j. For paths which do not depend on wi,j, Nothing needs to be updated
about them. If their paths are less or equal than any path which includes wi,j then
obviously these paths are still optimal when the weight of wi,j increases. If for vertex
x, P (x, j)! = i then x shall never visit edge {i, j}.

Our focus starts on vertices x whose Π(x, j) equals i. For each such x and each arbitrary
vertex y, We compute minimum paths from x to y and update if needed. Let D′ and
Π′ denote minimum distance and predecessor matrices after updating the weight of
edge {i, j} to r, respectively. Any path x → y either consists of a single edge {x, y}
or contains an intermediate vertex between x and y. We loop on all vertices z to
compute D(x, z) + D(z, y) and then set D′(x, y). However, we must check whether
edge {i, j} falls into the path x → z or z → y. if NO, then we know D′(x, z) = D(x, z)
and D′(z, y) = D(z, y). If YES, then the new weight of path x → y which equals
D(x, y) + (r−wi,j), is equal or less than the new weight D(x, z) +D(z, y) + (r−wi,j).
That follows by D(x, y) ≤ D(x, z) +D(z, y) as the additional weight r − wi,j is added
on both sides of the inequality. In this case we know z won’t offer a less-weight path.
So we can restrict our focus on vertices z whose corresponding paths do not include
edge {i, j}.

(For LaTeX issues we denote matrix Π by P)

3

isEdgeInPath(edge {i,j}, path x -> y, predecessor P)

if P(x,j) != i

return False

s = y

while P(x,s) != x

if P(x,s) == j

return False

return True

Main()

for x = 0 to n

if P(x,j) = i

for y = 0 to n

minDistance = min{ edge (x,y) if exists, D(x,y) + (r - w_i,j) }

minVertex = NULL

isDistanceUpdated = False

for z = 0 to n

if isEdgeInPath({i,j}, x -> y, P) OR z = x OR z = y

continue to next iteration of z

zDistance = D(x,z) + D(z,y)

if (distance < minDistance)

minDistance = zDistance

minVertex = z

isDistanceUpdated = True

if isDistanceUpdated

P’(x,y) = P(z,y)

P’(x,z) = P(x,z)

Complexity. O(V 3)

4

b

c

In the same mannger matrices M and Π are maintainces distances and predecessors,
We maintain also matrix W for the number of edges corresponding to di,j in M . The
algorithm then checks W before updating a new solution whether its number of edges
is at most h.

Complexity. The overhead is constant over the original algorithm. In terms of
parameters and h is postponed.

d

The algorithm constructs a series of matrices L1, L2, .., Ln−1 where Lm =
(
lmij
)
, indicating

shortest-paths of edges length at most m. The adapted algorithm terminates on Lh and
outputs it.

Complexity. At most the complexity of the original algorithm.

e

Prob. 2

a

We prove if there are two different minimum spanning trees, Ta and Tb, Then we can
construct a minimum spanning tree Tc whose weight is less than either of them.

We define:

� Ea = Ta(E)

5

� Eb = Tb(E)

� Ec = Ea ∩ Eb

� Ea−b = Ea − Eb

� Eb−a = Eb − Ea

� E−c = Ea−b ∪ Eb−a

� ea, An edge in Ea

� ea0, An edge in Ea−b

Lemma. 1 For an edge ea0 = {x, y}, x and y are connected by a path in Tb which
does not include edge ea0. Similarly for eb0.
Follows immediately as by definition ea0 ̸∈ Eb.

Lemma. 2 For an edge ea0 = {x, y}, There exists distinct edges e1b and e2b such that
e1b joins x and e2b joins y in Eb. Similarly for eb0.
Follows immediately by Lemma 1. Note the two edges e1b and e2b can share at most one
vertix.

Lemma. 3 If there is a cycle where all edges are in Ea except exactly one edge
eb in Eb, and w(eb) < w(eia) for some eia in the cycle, then we can construct a MST
T ′
a = Ta − eia + eb of weight less than Ta

Consider two vertices, v1 and v2, whose connectivity relies on edge eia = {x, y}. The
path is p(v1, x), (x, y), p(y, v2). By adding eb we know there is path p0(x, y) ̸= (x, y),
i.e x can reach y without edge (x, y). Therefore we can form an alternative path for
v1 and v2 without relying on (x, y) by p(v1, x), p0(x, y), p(y, v2). Thus, Removing eia is
safe. Note It is clear neither p(v1, x) nor p(v2, x) contains edge (x, y) as that means
there is an unnecessary cycle in the path.

Clearly E−c is non-empty, Otherwise Ta = Tb. Without the loss of generality, Assume
the selected element of E−c is {x, z} = ea0 ∈ Ea−b. There are only two cases regarding
the weight of ea0.

6

Case 1: w(ea0) = 0. By Lemma 1 we know there is a path p(x, y) which does not
include ea0. Clearly have a circle of, edges in Eb and exactly one edge in Ea. Since all
weights of the graph are distinct and non-negative, w(ea0) is strictly less than all edges
in the circle. By Lemma 3, We can form a lower-weight MST. Contradiction.

Case 2: w(ea0) > 0. By Lemma 2 we get edges e1b and e2b in Eb where they contain
vertices x and y. Clearly it is not possible for both e1b and e2b to be in Ea. Otherwise
we would have a cycle in Ta contradicting the fact a tree has no cycles. It is easy to
justify it by considering T ′

a = Ta − ea0. Without the loss of generality assume e1b ̸∈ Ea,
i.e e1b = e1b0. Denote e1b0 by {y, z}.

We claim there is a cycle of edges including eb0 and ea0, Where all remaining edges are
in Ea. By connectivity of Ta we know there is a path in Ta between x and z. Note the
cycle is totally legit if it contained y. Similarly, There is a cycle of edges including ea0
and eb0, Where all remainig edges are in Eb.

We know ea0 ̸= eb0. In either cases some edge is greater than the other. By Lemma 3,
We get a lower-weight spanning tree. Contradiction.

b

Correctness. For any graph G, There is a unique sub-graph Gc, Such that for any
cycle c in G whose all edges are in Gc except for exactly one edge ex, The weight of ex
is the maximum along the whole cycle of c. The proof is nearly identical to a.

Clearly the MST exerts this property lest we construct another spanning-tree of less
weight. Since the algorithm claimed here always prefers less-weight edges, It shall never
contradict that property also. By uniqueness the claimed algorithm yields the MST.

7

Algorithm Description. ”postponed”

Complexity Analysis. ”postponed”

c

Counter-example:

d

Correctness. Yes. The proof is nearly identical to a.

Algorithm Description. ”postponed”

Complexity Analysis. ”postponed”

e

f

8

	Exercises
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	Ex. 5
	Ex. 6

	Problems
	Prob. 1
	Prob. 2

