
Problem-Set 09

Mostafa Touny

April 20, 2023

Contents

Exercises 2
Ex. 1 . 2
Ex. 2 . 2
Ex. 3 . 2
Ex. 4 . 2

Problems 2
Prob. 1 . 2
Prob. 2 . 4

1

Exercises

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Problems

Prob. 1

a

Consider

A = {1, 2}
S = {1, 50}
V = {2, 50}
B = 50

Observe the optimal solution is C = 50 while Alg1 is of value C∗ = 2. Therefore the
approximation ratio is 2/50 = 1/25.

It is easy to see the number 50 can be set arbitrarily larger, and therefore we can reach
the desired unbounded approximation ratio.

b

We follow the same convention of assuming the given indices order follow non-increasing
order of their densities.

For the first index i such that
∑i

j=1 vj > B, denote items up to i−1 by Max-Dens-Items
and ith item by First-Overweight. For item ai denote D(ai) to be the density of ai, i.e
the value per one unit of weight.

Take D(First-Overweight) and multiply it by the slack weight in B after consuming
weights of Max-Dens-Items. Sum the resulting value along values of Max-Dens-Items
and let VmaxDensities denote that sum.

It is very clear C∗ ≤ VmaxDensities as we fully utilized the space of B with maximum
possible densities.

Let’s return to Alg2 and note how similar it is to the way we defined VmaxDensities.
Remark that C = max{VmaxDensities, value of First-Overweight}. We have two cases:

2

� Case 1. Weights of Max-Dens-Items ≥ B
2 .

Then C ≥ VmaxDensities
2 , As Max-Dens-Items accounts for more than 50% of

VmaxDensities.

� Case 2. Weights of Max-Dens-Items < B
2 .

Then the weight of First-Overweight is greater than B
2 . It follows VmaxDensities is

contributed only by Max-Dens-Items and First-Overweight. Observe one of them
must contribute at least 50% of VmaxDensities. By definition, that one shall be

selected by Alg2, and therefore C ≥ VmaxDensities
2 .

c

That is a standard dynamic programming problem whose solution can be found in any
textbook. For brevity we only show the recurrece relation.

Base: S1,v = w(a1) if w(a1) = v.
Induction Step: Si,v = min{Si−1,v, w(ai) + Si−1,v−vi}

d

Polynomial Time Complexity. Observe the time complexity of Alg3 is O(n2V), As
the memoization table is:

value\items 1 .. n
1
..
nV

Since Alg4 basically runs Alg3 with additional linear operations, Its time complexity
is O(n2V ′), where V ′ is similarly defined but on scaled values v′i.

Clearly V ′ = ⌊VV · nϵ ⌋ = ⌊nϵ ⌋. So complexity of Alg4 can be re-written as O(n3 · 1
ϵ
).

Approximation Scheme. The idea is to use the bound of b but on scaled values v′i,
then reverse the scaling to reach the intended ratio.

Let U be the upper-bound of optimal solutions which we defined earlier in b on given
values vi. Let U

′ be similarly defined but on scaled values v′i. Define function f so that
it scales value as mentioned by the author. Let C and C ′ denote the value of the subset
solution obtained by Alg4 but on given and scaled values respectively.

From b, We know there exists a solution on scaled values v′i whose approximation ratio
is 2, out of U ′. Then trivially the optimal solution also can deviate by a ratio of at
most 2 out of U ′.

Observe if we scaled back a value then the calculated value is no greater than the
original given value, since we are taking ceils. In other words, f−1(v′i) ≤ vi.

3

Joining all these remarks:

C ′ ≥ 1

2
U ′

C ≥ f−1(C ′) ≥ 1

2
f−1(U ′) = U

From b, That suffices to concluding Alg4 is an approximation scheme.

Prob. 2

a

Assume for the sake of contradiction there is a cycle c0 in the reversed graph Ĝ. Then it
must contain an edge from A. Otherwise c0 would also be in graph G and by definition
it must contain an edge from A. Call that edge a. Returning to G, a would be reversed
as in the figure below. It is possible to have edges other than a in cycle c0 which
would also be reversed in graph G. In this case p0 would be constructed by taking the
corresponding sub-cycles into it.

Since A is minimal there must be a cycle c1 in graph G which would not be covered if
not for a. Observe we have cycle c2 constructed by paths p0 and p1. What covers c2 in
G? Clearly no edge in path p0 would do that since we already considered all edges of A
we might encounter and took a sub-cycle avoiding them. Then c2 is covered by edge b
in path p1 which is part of the cycle c1. That contradicts c1 being a cycle only covered
by edge a. QED.

4

b

Remove all isolated vertices as they are irrelevant to cycles. Iteratively contract edges
if they are not a side of a triangle as in the following figure.

By definition, Each edge of the resulting graph is a side of a triangle. Observe the
graph is still equivalent to the previous one, When it comes to cycles. Intuitively we
just condensed the length of cycles.

5

For a single edge e, Consider the number of different triangles it is a side of. If the
number is greater than k then we must have e ∈ S; Otherwise, To cover all of these
triangles, We will need more than k edges. Note any two different triangles can share
at most one edge. Remove edge e, and contract edges as needed if they are no longer a
side of a triangle (suffices also to maintain no isolated vertices). Output the resulting
graph as Ĝ but with a capacity of at most k − 1 edges to cover all of its cycles.

After repeating this process, We will have a graph where each edge is a side of a
triangles, whose count is no more than k. Also each vertex is part of a cycle. We show
now the number of vertices is upper-bounded by k2 + 2k. They key idea is, If there is
an additional vertex, We will have cycles more than what k edges can accommodate.

For a single edge e, It can cover at most k cycles. Vertices in those cycles are exactly, 2
of the edge itself, and k for each cycle. That is a total of 2 + k. See the picture below:

Considering all edges of A, The total we get is k(2 + k) = 2k + k2.

It is clear now we cannot have vertices greater than that number. As by our graph
structure that vertex v would be part of a cycle, and we have already consumed the
maximum number of cycles k edges can cover. In other words, We will miss a cycle
which contains vertex v.

c

It suffices to have a polynomial-time algorithm of the kernlization procedure we illustrated.

� Degrees of vertices are computed by a linear scan of edges, O(|E|).

� Contracting edges takes at most O(|E|2).

� Computing number of triangles for each edge takes at most O(|E|(|E|+ |V |)) by
a trivial graph search, made for each edge.

� Removing edges consumes O(|E|).

Since each step is polynomial in the size of the input, The sum of these sub-routines is
polynomial also.

6

	Exercises
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4

	Problems
	Prob. 1
	Prob. 2

