Problem-Set 09

Mostafa Touny

April 20, 2023

Contents

Exercises
Ex. 1. e
Ex. 2. e
Ex. 3. .
Ex. 4. .

O NN NN

o N

Exercises

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Problems

Prob. 1

a

Consider
A=1{1,2}
S = {1,50}
V = {2,50}
B =150

Observe the optimal solution is C' = 50 while Alg! is of value C'x = 2. Therefore the
approximation ratio is 2/50 = 1/25.

It is easy to see the number 50 can be set arbitrarily larger, and therefore we can reach
the desired unbounded approximation ratio.

b

We follow the same convention of assuming the given indices order follow non-increasing
order of their densities.

For the first index ¢ such that 22':1 v; > B, denote items up to i —1 by Maz-Dens-Items
and ith item by First-Overweight. For item a; denote D(a;) to be the density of a;, i.e
the value per one unit of weight.

Take D(First-Overweight) and multiply it by the slack weight in B after consuming
weights of Maz-Dens-Items. Sum the resulting value along values of Max-Dens-Items
and let V,,qeDensities denote that sum.

It is very clear Cx < VuzDensities @S we fully utilized the space of B with maximum
possible densities.

Let’s return to Alg2 and note how similar it is to the way we defined V,,.:pensities-
Remark that C' = max{V,azpensities, value of First-Overweight}. We have two cases:

e Case 1. Weights of Maz-Dens-Items > %

Then C' > M%“es, As Maz-Dens-Items accounts for more than 50% of

VmawDensities .

e Case 2. Weights of Max-Dens-Items < %

Then the weight of First-Overweight is greater than % It follows V,,uzDensities 1S
contributed only by Max-Dens-Items and First-Overweight. Observe one of them
must contribute at least 50% of Vj,auDensities- By definition, that one shall be

Vma:cDensi ies
selected by Alg2, and therefore C' > ﬁ—t

C

That is a standard dynamic programming problem whose solution can be found in any
textbook. For brevity we only show the recurrece relation.

Base: S, = w(ay) if w(ay) = v.
Induction Step: S;, = min{S;—1.,, w(a;) + Si—1v—v, }
d

Polynomial Time Complexity. Observe the time complexity of Alg3 is O(n?V), As
the memoization table is:

value\items | 1 | .. | n
1

nV

Since Alg4 basically runs Alg3 with additional linear operations, Its time complexity
is O(n?V"), where V' is similarly defined but on scaled values v!.

Clearly V' = L% 2] = [2]. So complexity of Alg4 can be re-written as O(n®- 1).

Approximation Scheme. The idea is to use the bound of b but on scaled values v;,
then reverse the scaling to reach the intended ratio.

Let U be the upper-bound of optimal solutions which we defined earlier in b on given
values v;. Let U’ be similarly defined but on scaled values v]. Define function f so that
it scales value as mentioned by the author. Let C and C” denote the value of the subset
solution obtained by Alg4 but on given and scaled values respectively.

From b, We know there exists a solution on scaled values v whose approximation ratio
is 2, out of U’. Then trivially the optimal solution also can deviate by a ratio of at
most 2 out of U’.

Observe if we scaled back a value then the calculated value is no greater than the
original given value, since we are taking ceils. In other words, f~1(v}) < v;.

Joining all these remarks:

Q
\%
<

C>f YT

(AV2
| =D =

I
S
I
S

From b, That suffices to concluding Alg4 is an approximation scheme.

Prob. 2

a

Assume for the sake of contradiction there is a cycle ¢y in the reversed graph G. Then it
must contain an edge from A. Otherwise ¢y would also be in graph G and by definition
it must contain an edge from A. Call that edge a. Returning to G, a would be reversed
as in the figure below. It is possible to have edges other than a in cycle ¢y which
would also be reversed in graph G. In this case pg would be constructed by taking the
corresponding sub-cycles into it.

Since A is minimal there must be a cycle ¢; in graph G which would not be covered if
not for a. Observe we have cycle ¢y constructed by paths py and p;. What covers ¢ in
G? Clearly no edge in path py would do that since we already considered all edges of A
we might encounter and took a sub-cycle avoiding them. Then cs is covered by edge b
in path p; which is part of the cycle ¢;. That contradicts ¢; being a cycle only covered
by edge a. QED.

b

Remove all isolated vertices as they are irrelevant to cycles. Iteratively contract edges
if they are not a side of a triangle as in the following figure.

By definition, Each edge of the resulting graph is a side of a triangle. Observe the
graph is still equivalent to the previous one, When it comes to cycles. Intuitively we
just condensed the length of cycles.

For a single edge e, Consider the number of different triangles it is a side of. If the
number is greater than k then we must have e € S; Otherwise, To cover all of these
triangles, We will need more than k£ edges. Note any two different triangles can share
at most one edge. Remove edge e, and contract edges as needed if they are no longer a
side of a triangle (suffices also to maintain no isolated vertices). Output the resulting
graph as G but with a capacity of at most k£ — 1 edges to cover all of its cycles.

After repeating this process, We will have a graph where each edge is a side of a
triangles, whose count is no more than k. Also each vertex is part of a cycle. We show
now the number of vertices is upper-bounded by k% + 2k. They key idea is, If there is
an additional vertex, We will have cycles more than what k£ edges can accommodate.

For a single edge e, It can cover at most k£ cycles. Vertices in those cycles are exactly, 2
of the edge itself, and k for each cycle. That is a total of 2 4+ k. See the picture below:

' <

¢ K:5
/A

L B l

Considering all edges of A, The total we get is k(2 + k) = 2k + k2.

It is clear now we cannot have vertices greater than that number. As by our graph
structure that vertex v would be part of a cycle, and we have already consumed the
maximum number of cycles k edges can cover. In other words, We will miss a cycle
which contains vertex v.

c
It suffices to have a polynomial-time algorithm of the kernlization procedure we illustrated.
e Degrees of vertices are computed by a linear scan of edges, O(|E|).
e Contracting edges takes at most O(|E|?).

e Computing number of triangles for each edge takes at most O(|E|(|E| + |V|)) by
a trivial graph search, made for each edge.

e Removing edges consumes O(|E|).

Since each step is polynomial in the size of the input, The sum of these sub-routines is
polynomial also.

	Exercises
	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4

	Problems
	Prob. 1
	Prob. 2

