Homework 1

Mostafa Touny

February 20, 2025

Contents

Exercises																2														
1																														2
2																														3
3																														5

Exercises

1

(b) \to (a). For arbitrary ϵ we are given a subdivision $z_0(\epsilon)$ with $|z_0(\epsilon)| < \delta_0$ for some δ_0 such that $|R(f, z_0(\epsilon) - A)| < \epsilon$. For any finer subdivision w, $|w| \le |z_0(\epsilon)| < \delta_0$. By hypothesis $|R(f, w) - A| < \epsilon$.

(a)
$$\rightarrow$$
 (b).

Insight. The idea is, given a subdivision z, we can take a small enough modulus for z_0 , so that it has subdivision points arbitrarily close to points z. With boundedness, the Riemann integral of both shall be close.

Proposition 1. If f is bounded on [a, b] then $\exists M'$ such that $|f(t) - f(y)| \leq M'$ for arbitrary $t, y \in [a, b]$.

Proof. Since f is bounded, the $\sup_{t \in [a,b]} \{f(t)\} = M$ exists. Thereby $|f(t) - f(y)| \le |f(t)| + |f(y)| = |f(t)| + |f(y)| \le M + M = M'$.

Definition. For a subdivision z, define $d_{min}(z) = \min\{x_k - x_{k-1}\}.$

Procedure 2. Given any subdivisions $z = (x_0, x_1, \ldots, x_n)$ and w where $|w| \le d_{min}(z)/2$. Assign to each x_i a nearest y_i in w. It follows $|x_i - y_i| < d_{min}(z)/4$ and in turn no y_i will be assigned twice.

Lemma. $\forall \epsilon \forall z = (x_0, \dots, x_n) \exists \delta > 0$, s.t if $w = (y_0, \dots, y_n)$ is a subdivision with $|x_k - y_k| < \delta$ then $|R(f, z \vee w) - R(f, (z - \{x_q\} + \{y_q\}) \vee w)| < \epsilon$ for any $x_q \in x$.

Proof. Observe
$$(z - \{x_q\} + \{y_1\}) \vee w = (z - \{x_q\}) \vee w$$
.

Set $\delta = \epsilon/M'$. Let $w = (y_i)$ be any subdivision such that $|x_k - y_k| < \delta$.

Call y_q the point nearest to x_q . If $y_q > x_q$ consider x_{q-1} and if $y_q < x_q$ consider x_{q+1} . WLOG consider the former. Denote $\xi_0 \in [a, x_q]$ and $\xi_1 \in [x_q, y_q]$. When x_q gets removed, these two are replaced by $\xi_0 \in [a, y_q]$. In other words, $\xi_0(x_q - a) + \xi_q(y_q - x_q)$ in $R(f, z \vee w)$ will be $\xi_0(y_q - a)$ in $R(f, z - \{x_q\} \vee w)$.

Therefore,

$$|R(f, z \vee w) - R(f, z \vee w - x_q)| = |\xi_0(x_q - a) + \xi_q(y_q - x_q) - \xi_0(y_q - a)|$$

$$= |\xi_0(x - a - y_q + a) + \xi_1(y_q - x_q)|$$

$$= |\xi_1(y_q - x_q) - \xi_0(y_q - x_q)|$$

$$= |(\xi_1 - \xi_0)(y_q - x_q)| < |(\xi_1 - \xi_0) \cdot \epsilon / M'| \le |\epsilon| = \epsilon$$

Lemma. $\forall \epsilon > 0 \forall z = (x_0, x_1, \dots, x_n) \exists \delta$, s.t if $w = (y_0, y_1, \dots, y_n)$ with $|x_k - y_k| < \delta$ then $|R(f, z \lor w) - R(f, w)| < \epsilon$.

Proof. Consider an arbitrary $\epsilon > 0$. Substitute ϵ/n in the previous lemma. Apply the lemma n times substituting x_q by y_q in z to get $\forall k = 1, \ldots, n$

$$|R(f, z - \{x_{\pi_1}, \dots, x_{\pi_{k-1}}\} \vee w) - R(f, z - \{x_{\pi_1}, \dots, x_{\pi_k}\} \vee w)| < \epsilon/n$$

By the triangular inequality $|R(f, z \vee w) - R(f, w)| \le \epsilon/n + \epsilon/n + \cdots + \epsilon/n = \epsilon$.

Corollary 3. $\forall \epsilon > 0 \forall z = (x_0, \dots, x_n) \exists \delta > 0$, s.t if w' is any subdivision finer than $w = (y_0, \dots, y_n)$ with $|x_k - y_k| < \delta$, then $|R(f, z \vee w') - R(f, w')| < \epsilon$.

Theorem. Main problem.

Let f be Riemann integrable. By proposition (1) we take M'.

Take arbitrary $\epsilon > 0$. By hypothesis we are given a subdivision $z = (x_0, \dots, x_n)$, s.t $\forall w$ finer, $|R(f, w) - A| < \epsilon/2$.

In corollary (3) substitute $\epsilon/2$ and z to get δ_0 . Take $\delta = \min\{\delta_0, d_{min}(z)/2\}$. Consider an arbitrary subdivision z_0 with $|z_0| < \delta$. By procedure (2) we are given a coarser subdivision $w = (y_0, y_1, \ldots, y_n)$ in z_0 , s.t $|x_k - y_k| < \delta/2 < \delta$. By corollary (3), $|R(f, z \vee z_0) - R(f, z_0)| < \epsilon/2$.

By triangular inequality

$$|R(f, z_0) - A + R(f, z \vee z_0) - R(f, z \vee z_0)| \le |R(f, z_0) - R(f, z \vee z_0)| + |R(f, z \vee z_0) - A|$$

$$\le \epsilon/2 + \epsilon/2 = \epsilon \blacksquare$$

Limit equivalence. No. A counter-example is the Dirichlet function. Any value of the form $a + \frac{k(b-a)}{n}$ is rational.

2

(i)

Following the given hint

$$2\sin x \sin(\frac{b-a}{n}) = \cos(x - \frac{b-a}{n}) - \cos(x + \frac{b-a}{n})$$
$$2\sin(a+k \cdot \frac{b-a}{n})\sin(\frac{b-a}{n}) = \cos(a+(k-1)\frac{b-a}{n}) - \cos(a+(k+1) \cdot \frac{b-a}{n})$$

Denote
$$g(k) = \cos(a + k \cdot \frac{b-a}{n})$$
. Then

$$\sum_{k=1}^{n} \cos(a + (k-1)\frac{b-a}{n} - \cos(a + (k+1)\frac{b-a}{n})$$

$$= \sum_{k=1}^{n} g(k-1) - g(k+1)$$

$$= g(0) - g(2)$$

$$+ g(1) - g(3)$$

$$+ \dots$$

$$+ g(n-2) - g(n)$$

$$+ g(n-1) - g(n+1)$$

$$= g(0) + g(1) - g(n) - g(n+1)$$

It follows

$$\sum_{k=1}^{n} 2\sin(a+k\cdot\frac{b-a}{n})\sin(\frac{b-a}{n})$$

$$= 2\sin(\frac{b-a}{n})\sum_{k=1}^{n}\sin(a+k\cdot\frac{b-a}{n})$$

$$= \cos(a) + \cos(a+\frac{b-a}{n}) - \cos(b) - \cos(a+\frac{n+1}{n}\cdot(b-a))$$

Observe

$$\lim_{n \to \infty} \cos(a + \frac{b-a}{n}) = \cos(a)$$
$$\lim_{n \to \infty} \cos(a + \frac{n+1}{n} \cdot (b-a)) = \cos(a+b-a) = \cos(b)$$

Thereby

$$\sum_{k=1}^{n} \sin(a+k \cdot \frac{b-a}{n}) = 1/\sin(\frac{b-a}{n}) \cdot (\cos(a) - \cos(b))$$

(ii) Not solved

The Riemann sum is

$$\sum_{k=1}^{n} \frac{b-a}{n} \sin(a+k \cdot \frac{b-a}{n}) = \frac{b-a}{n} \sum_{k=1}^{n} \sin(a+k \cdot \frac{b-a}{n}) = \frac{n}{(b-a)\sin(\frac{b-a}{n})} (\cos(a) - \cos(b))$$

3

- (i) The statement does not hold in general. As a counter-example, consider $f:[0,1] \to \mathcal{R}$ where f(x) = 1/x and $x \neq 0$. For any $[0, x_1]$, we can choose ξ_1 , so that $|f(x) \cdot (x_1 0) f(\xi_1) \cdot (x_1 0)|$ is lower-bounded by some constant.
- (ii) Depending on choices of ξ , each partial sum can be either 0 or 1. Thereby the function $g_{z,t}(x)$ could be 0 or 1*(b-a)=b-a for example.