Homework 02

Mostafa Touny

March 16, 2025

Contents

Exe	rc	is	es																					
1																								
2																								
3																								
			(i)																					
			(ii)																				
			(ii																					
3																								
			(i)																					
			(ii																					
			(ii	i)																				
			ix	7)																				

Exercises

1

Let D be the points of discontinuity. For $\varepsilon > 0$ set $\eta = \min(\varepsilon, \varepsilon/2(b-a))$. Observe D_{η} is negligible as D is negligible. Take M, m to be an upper and lower bound of f respectively.

By negligibility D_{η} is coverable by a family $(J_m)_{m \in N^*}$ of open intervals such that $\sum_{m=1}^{\infty} \ell(J_m) < \varepsilon/2(M-m)$. Since it is closed and bounded, by *Hein-Borel* we take a finite cover J_1, \ldots, J_N where $J_m =]a_m, b_m[$ and $b_{m-1} \le a_m$. Observe $D_{\eta} \subseteq \bigcup_{m=1}^N J_m$.

It follows if $x \notin \bigcup_{m=1}^N J_m$ then $w(f;x) < \eta$. Then there exists $\delta_x > 0$ such that $w_{\delta}(f;x) < \eta$. Call the corresponding open set S_x . Then $|\sup S_x - \inf S_x| < \eta$. Observe $(\bigcup_{m=1}^N J_m)^{\complement} \subseteq \bigcup_x S_x$. By *Hein-Borel* we can take finite $\{S_x\}$. Among their corresponding $\{\delta_x\}$, take the smallest and call it δ .

Subdivide $[b_{m-1}, a_m]$ into finite intervals $I_1^{(m)}, \ldots, I_{r_m}^{(m)}$, each of length less than δ . Take z_{ε} to be a subdivision of [a, b] containing all I_k^m for $m = 1, \ldots, N$ and $k = 1, \ldots, r_m$.

Now for any $S_k = [y_{k-1}, y_k]$, either

- Case 1. $S_k \subseteq J_m$. Then $M_k m_k \le M m$. Denote those intervals by B.
- Case 2. $S_k \subseteq I_r^{(m)}$. Then $M_k m_k \le \eta$. Denote those intervals by G.

We show $U(f; w) - L(f; w) < \varepsilon$

$$U(f; w) - L(f; w) = \sum_{k=1}^{n} (M_k - m_k)(y_k - y_{k-1})$$

$$= \sum_{k \in G} (M_k - m_k)(y_k - y_{k-1}) + \sum_{k \in B} (M_k - m_k)(y_k - y_{k-1})$$

$$\leq \eta \sum_{k \in G} (y_k - y_{k-1}) + (M - m) \sum_{k \in B} (y_k - y_{k-1})$$

$$\leq \eta(b - a) + (M - m) \frac{\varepsilon}{2(M - m)}$$

$$\leq \frac{\varepsilon}{2(b - a)}(b - a) + \frac{\varepsilon}{2} = \varepsilon$$

$\mathbf{2}$

Lemma. $\int_{-a}^{b} f(x)dx \le c_i(S(f))$

For any L(f;z), the corresponding rectangles could be re-interpreted as a finite union

of disjoint rectangles, reserving exactly the same area. Thereby

$$\{L(f;z) \mid \text{subdivision } z\} \subseteq \{area(B) \mid B \subseteq A, B \text{ is a simple set}\}$$

 $\sup\{L(f;z) \mid \text{subdivision } z\} \leq \sup\{area(B) \mid B \subseteq A, B \text{ is a simple set}\}$
 $\int_{\underline{a}}^{b} f(x)dx \leq c_i(S(f))$

Lemma. $c_i(S(f)) \leq \int_{-a}^b f(x) dx$

Since f is bounded on a closed interval [a, b], $area(S(f)) = \int_{-a}^{b} f(x)dx$. But for any simple set $B \subseteq S(f)$, we know $area(B) \le area(S(f))$. It follows

$$\sup\{area(B) \mid \text{simple set B}\} \le \int_{\underline{}a}^{b} f(x)dx$$
$$c_i(S(f)) \le$$

3

(i)

Consider a function f induced by a line segment. Then it is bounded on a closed interval, and hence Riemann integrable. Observe U(f;z) - L(f;z) induces rectangles which do cover the line. Since $|U(f;z) - L(f;z)| \to 0$, it follows there are simple sets of disjoint rectangles S_1, S_2, \ldots such that $area(S_i) \to 0$. Therefore, the outer Jordan content is $c_o(PQ) = 0$. Since $c_i(PQ) \le c_o(PQ)$ it follows also $c_i(PQ) = 0$.

(ii)

Observe $area(R_n) = \left(\frac{1}{2^n} - \frac{1}{2^{n+1}}\right) \cdot n2^{n+1} = n$. Since $\{R_n\}$ is a pairwise disjoint set of rectangles,

$$area(R_1 \cup R_2 \cup \dots \cup R_n) = area(R_1) + \dots + area(R_n)$$

$$area\left(\bigcup_{i=1}^N R_n\right) = 1 + 2 + \dots + N = \frac{N(N+1)}{2}$$

$$c_i\left(\bigcup_{i=1}^N R_n\right) = c_o\left(\bigcup_{i=1}^N R_n\right) =$$

Therefore $c_i(U_{i=1}^{\infty}R_n) = c_o(U_{i=1}^{\infty}R_n) = \infty$.

(iii)

3

(i)

Holds. For any A, and p_n , we have $t_n \not< 0$. Hence $\sum_{p_n \in A} t_n \not< 0$.

(ii)

Holds. if $A \subset B$, then

$$\sum_{p_n \in B} t_n = \sum_{p_n \in A} t_n + \sum_{p_n \in B - A} t_n \qquad \text{since } A \cap (B - A) = \phi$$

$$= v(A) + v(B - A)$$

$$\geq v(A) \qquad \text{since } v(B - A) \geq 0 \text{ by } (i)$$

(iii)

Holds.

$$v(A \cup B) = \sum_{p_n \in A \cup B} t_n$$

$$= \sum_{p_n \in A} t_n + \sum_{p_n \in B} t_n$$

$$= v(A) + (B)$$
 since $A \cap B = \phi$

(iv)