Homework 03

Mostafa Touny

April 15, 2025

Contents

Exerci	Exercises																2												
1 .																													
2 .																													3
3.																													3
4 .																													3
5.																													4

Exercises

1

Lemma. $\mu(\limsup_n A_n) \ge \limsup_n \mu(A_n)$

Set $A'_n = \bigcup_{k \ge n} A_k$ and observe it is a decreasing sequence $A'_n \supseteq A'_{n+1}$ where $\mu(A'_1) < \infty$ by hypothesis. It follows

$$\mu(\bigcap_{n=1}^{\infty} A'_n) = \lim_{n \to \infty} \mu(A'_n) = \lim_{n \to \infty} \mu(\bigcup_{k \ge n} A_k) (1)$$

$$\mu(\bigcap_{n=1}^{\infty} (\bigcup_{k \ge n} A_k)) =$$

Fix n and observe $\forall k \geq n \ \mu(\bigcup_{k \geq n} A_k) \geq \mu(A_k)$ as $\forall k \geq n \ \bigcup_{k \geq n} A_k \supseteq A_k$. It follows for any $n, \mu(\bigcup_{k \geq n} A_k) \geq \sup_{k \geq n} \mu(A_k)$. Therefore $\lim_{n \to \infty} \mu(\bigcup_{k \geq n} A_k) \geq \lim_{n \to \infty} \sup_{k \geq n} \mu(A_k)$ (2).

By (1) and (2), the intended result follows.

Lemma. $\mu(\liminf_n A_n) \leq \liminf_n \mu(A_n)$

Set $A'_n = \bigcap_{k \geq n} A_k$ and observe it's increasing $A'_k \subseteq A'_{k+1}$. Then

$$\mu(\bigcup_{n=1}^{\infty} A'_n) = \lim_{n \to \infty} \mu(A'_n)$$

$$\mu(\bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k) = \lim_{n \to \infty} \mu(\bigcup_{k > n} A_k)$$
 (1)

Clearly $\forall n \forall k, \bigcap_{k \geq n} A_k \subseteq A_k$, implying $\mu(\bigcap_{k \geq n} A_k) \leq \mu(A_k)$. It follows $\forall n \ \mu(\bigcap_{k \geq n} A_k) \leq \inf_{k \geq n} \mu(A_k)$. Hence

$$\lim_{n \to \infty} (\mu(\bigcap_{k \ge n} A_k)) \le \lim \inf_{k} \mu(A_k) = \lim_{n \to \infty} \inf_{k \ge n} A_k$$
(2)

By (1) and (2), the intended result follows.

Example. Equality.

Take $(A_k)_k$ pairwise disjoint where $\mu(A_k) \to 0$. Then $\bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k = \phi$ where $\mu(\phi) = 0$, for the left hand side. On the right hand side, $\limsup_n \mu(A_n) = 0$.

Lemma. Borel-Cantelli.

Since $\sum_{n=1}^{\infty} \mu(A_n) = c$ for some constant c, clearly

$$\forall n \sum_{k \ge n}^{\infty} \mu(A_k) = c - \sum_{k=1}^{n-1} \mu(A_k)$$

$$\lim_{n \to \infty} \sum_{k \ge n}^{\infty} \mu(A_k) = c - \lim_{n \to \infty} \sum_{k=1}^{n-1} \mu(A_k)$$

$$= c - c$$

$$= 0 \quad (1)$$

By measure's sub-additivity

$$\forall n \ \mu(\bigcup_{k \ge n} A_k) \le \sum_{k \ge n}^{\infty} \mu(A_k)$$

$$\lim_{n \to \infty} \mu(\bigcup_{k \ge n} A_k) \le \lim_{n \to \infty} \sum_{k \ge n}^{\infty} \mu(A_k) \quad (2)$$

By (1) and (2),
$$\mu(\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_k) = \lim_{n \to \infty} \mu(\bigcup_{k \geq n} A_k) \leq 0$$
.

 $\mathbf{2}$

 ϕ is not in the domain, so the set of singletons is not a semi-ring.

3

Partially Solved

Note we are given $\mu(\Omega) = v(\Omega)$.

Lemma. $\mu(E^c) = v(E^c)$.

$$\mu(E) = v(E)$$

$$\mu(\Omega \setminus E^c) = v(\Omega \setminus E^c)$$

$$\mu(\Omega) - \mu(E^c) = v(\Omega) - v(E^c)$$

$$\mu(E^c) = v(E^c)$$

4

Partially Solved

a.

Lemma. $\mathcal{B}(\mathbb{R}^2) \subseteq \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$

It suffices to show, the generating set of the L.H.S is a subset of the generating set of the R.H.S. Let S be an arbitrary open set of \mathbb{R}^2 . Then we can take points $p_i \in S \cap \mathbb{Q}$ covered by open balls. Take rectangles R_i subset of those open balls, and note $p_i \in R_i \subseteq S$ implying the countable union $\bigcup_i R_i = S$ by the density of rationals. Denote $R_i = [a_i, b_i[\times [c_i, d_i[\cdot], b_i[\cdot], [c_i, d_i[\cdot] \in \mathcal{B}(\mathbb{R})])]$ it is clear R_i is in the generating set of $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ implying $\bigcup_i R_i \in \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

Lemma. For any open sets A and B in \mathbb{R} , it follows $A \times B \in \mathcal{B}(\mathbb{R}^2)$.

Take any element $(a, b) \in A \times B$ and observe there are open neighbourhoods whereby $a \in]x, x'[\subseteq A \text{ and } b \in]y, y'[\subseteq B]$. Then $R_{a,b} =]x, x'[\times]y, y'[\subseteq A \times B]$ and $\bigcup_{a,b} R_{a,b} = A \times B$. Since each $R_{a,b}$ is open in \mathbb{R}^2 , it follows $A \times B \in \mathcal{B}(\mathbb{R}^2)$.

b.

By a, measure $(m \otimes m)$ is defined on $\mathcal{B}(\mathbb{R}^2)$. For any element $[a, b[\times [c, d] \text{ of the generating set of } \mathcal{B}(\mathbb{R}^2)$, we know $m^2([a, b[\times [c, d]) = (b-a)(d-c) = m([a, b]) \cdot m([c, d]) = (m \otimes m)([a, b[\times [c, d])$. By Caratheodory's uniqueness, the intended result follows.

 $\mathbf{5}$

Unsolved