Homework 04

Mostafa Touny

May 24, 2025

Contents

Exercises																2													
	1																												2
	2																												2
	3																												2
	4																												2
	5																												2

Exercises

1

For $\min(f,g)$ we want to show $\int \min(f,g)^+$ and $\int \min(f,g)^-$ are finite.

For $\varphi \leq \min(f,g)^+ = \min(f^+,g^+) \leq f^+$, it follows $\varphi \leq \int f^+$ upper bounded. Hence $\sup\{\varphi \mid \varphi \leq \min(f,g)^+\} = \int \min(f,g)^+$ is finite.

For $\varphi \leq \min(f,g)^- = \max(f^-,g^-)$, observe $\int \max(f^-,g^-)$ is finite as both $\int f^-$ and $\int g^-$ are finite. It follows $\varphi \leq \int \max(f^-,g^-)$ upperbounded. Hence $\{\varphi \mid \varphi \leq \min(f,g)^-\}$ is finite.

2

3

4

5