
Harvey’s Notes I - Chapter 01

Mostafa Touny

November 15, 2023

Contents

Exercises 2
Ex. 1 . 3
Ex. 2 . 4

1

Exercises

Ex. 1

Part I

def randElement(A[1..n])

X = random([n])

return A[X]

Since the probability space is uniform, For event M = {n4 + 1, . . . , 34n}, Pr[M] =
1
n · |M | = 1

n · n2 = 1
2.

Part II

Additionally we certify if the randomly generated element is in middle half.

def randElement2(A[1..n])

Select a random element of A

k = randElement(A)

Certify whether it is in middle half

count values less and greater

countLess = countGreater = 0

for i in 1..n:

if A[i] < k

countLess = countLess + 1

else if A[i] > k

countGreater = countGreater + 1

check if k is between first and forth quarters

if (countLess >= n/4) and (countGreater >= n/4)

return k

return FAIL

Let R be the algorithm’s output. R = FAIL if and only if ¬M . So Pr[R = FAIL] =

Pr[¬M] = 1− Pr[M] = 1− 1
2 = 1

2.

Part III

We repeat until the probability is upperbounded by 0.01.

def randElement3(A[1..n])

repeat 7 times

for i in 1..7

2

generate a random element

out = randElement2(A[1..n])

if the number is certified to be correct return it

if out != FAIL

return out

if 7 trials failed

return FAIL

Setting 0.5x = 0.01 we get x = log1/2 0.01 =
log2 100

−1

log2 2
−1 =

(−1) log2 100
(−1) log2 2

= log2 100 ≤

log2 128 = log2 2
7 = 7

Let R be the algorithm’s output, and let Ri be the output of subroutine randElement2
in iteration i. Then R = FAIL if and only if R1 = FAIL∧· · ·∧R7 = FAIL. We know

Pr[Ri = FAIL] = 1
2 and Ri are pairwise independent. We conclude Pr[R = FAIL] =

Pr[R1 = FAIL ∧R2 = FAIL ∧ · · · ∧R7 = FAIL] =
(
1
2

)7

≤ 0.01.

Ex. 2

Part I

Trivial.

Part II

Hint. By Dr. I. El-Shaarawy, Not to skip Part I, and to observe the pattern in the
following example. It signals the answer is 2k if x = 0 and 2k−1 otherwise.

Binary Number Count of Even Parity
000 8
001 4
010 4
011 4
100 4
101 4
110 4
111 4

Lemma 1. The zero 0 = 00 . . . 0︸ ︷︷ ︸
k times

counts 2k numbers of even parity.

Trivially, BitwiseAnd(0, x) = 0 for any binary number x ∈ [2k], and Parity(0) = 0.

Now we can focus on x ̸= 0.

3

Definition 2. Given x denote indices of 1-bits by 1-bits-indices.

Lemma 3. 1-bits-indices decide the parity.

Observe for any r ∈ [2k].

BitwiseAnd(xi, ri) =

{
0 if xi = 0

ri if xi = 1

So we can restrict our focus only on 1-bits-indices to compute the parity. In other words

Parity(BitwiseAnd(x, r)) =

{
0 if r has even 1 bits in 1-bits-indices

1 if r has odd 1 bits in 1-bits-indices

Lemma 4. The number of k-length strings containing even number of 1 bits in 1-bit-
indices is 2k−1.

Define a bijection

f : {strings of even 1-bits in 1-bits-indices} → {strings of odd 1-bits in 1-bits-indices}

Mapping a binary string to the same string but with last bit in 1-bit-indices flipped. If
that bit is sm, Then f(s1s2 . . . sk) = s1s2 . . . sm . . . sk−1sk. It follows domain and range
have the same cardinality, and since they partition the set of k-length strings, the result
follows.

Theorem 5. Fixing any binary x ̸= 0, Among all r ∈ [2k], Exactly half of them yield
even parity, i.e Parity(BitwiseAnd(x, r)) = 0.

Corollay 6. Given x ∈ [2k], The number of zeros in the vector mentioned in question
is {

2k if x = 0

2k−1 if x ̸= 0

4

	Exercises
	Ex. 1
	Ex. 2

