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Problem 1

The required conditions follow naturally as:

• d′(x, x) =
√

d(x, x) =
√
0 = 0.

• If d(x, y) > 0 then d′(x, y) > 0 as the square root of non-zero is non-zero.
Otherwise 02 = 0 contradicting the fact d′(x, y) > 0.

• d′(x, y) =
√
d(x, y) =

√
d(y, x) = d′(y, x).

• d′(x, y) =
√
d(x, y) ≤

√
d(x, r) + d(r, y) ≤

√
d(x, r) +

√
d(r, y) = d′(x, r) +

d′(r, y).

For an arbitrary open-set of d, {y | d(x, y) < r} there is an equivalent open-set of d′,
{y | d′(x, y) <

√
r}. For an arbitrary open-set of d′, {y | d′(x, y) < r}, there is an

equivalent open-set of d, {y | d(x, y) < r2}.

Note. Some good friends assisted in solving this problem.

Problem 2

Lemma. For any point p in R, There exists a smallest element in the set {q ∈ E | q >
p}
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Assume to the contrary that no smallest element exists. Then as the set is bounded
below, the infimum exists, and is a limit point. That contradicts our hypothesis of no
limit points in E.

Corollary. E ∩R+ = E+ has a smallest element

By the above lemma set p = 0.

Corollarly. Given xi ∈ E+ there exists a smallest element among E+ ∩ {y | y > xi}

By the above lemma set p = xi.

Now we have a counting scheme on E+. What is remaining now is to prove every
element in E will be hit eventually. The following lemma suffices.

Lemma. there are finitely many elements in E ∩ [−|a|, |a|]

Assuming the contrary for the sake of contradiction, We get infinite elements in E ∩
[−|a|, |a|]. Those are present in both E and [−|a|, |a|] by definition. Since [−|a|, |a|]
is compact we know any infinite subset has a limit point (Theorem 2.41, p. 40 in
baby-rudin). But then we get a limit point in E. Contradiction

Similarly we can prove E ∩R− = E− is countable, and hence E is countable also.

Note. 1 Professor Peng Zhou hinted the solution approach

Note. 2 Through chatting with good friends a cleaner alternative proof can be made
as, ”Because E has no limit points it is closed. Assume E is uncountable. Then there is
an integer n such that intersection with [n,n+1] is also uncountable. This intersection
is closed and bounded, thus compact. So we can take a sequence inside this intersection
and it will have a convergent subsequence contradicting the assumption on limit points”
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Problem 3

Assume for the sake of contradiction that the process does not stop after a finite number
of steps. Then the sequence xi is infinite. Consider the infinite subset {xi} = Sδ; By
hypothesis it has a limit point in X, Call it p. So for neighbourhood Nδ/4(p), some
point q1 ̸= p is in that neighbourhood. Let r1 = d(p, q1). Consider neighbourhood
Nr1/2(p); Clearly q1 is not in it. So there is a point q2 ̸= q1 in it. We have now
distinct points q1, q2 ∈ S such that d(p, q1) ≤ δ/4 and d(p, q2) ≤ δ/4. It follows
d(q1, q2) ≤ d(q1, p) + d(p, q2) ≤ δ/4 + δ/4 = δ/2. But the construction of sequence xi

stipulates every pair of points is of distance at least δ. Contradiction.

It follows by the above lemma, that for any point p in X, the distance between it and
some xi of S is strictly less than δ. Therefore p is covered by Nδxi.

Now we prove X is separable. We know for each δ = 1/n, The corresponding subset
S1/n is finite. Clearly ∪nS1/n = S is countably infinite. It suffices to show, For a point
p ∈ X − S, it can get arbitrarily close to points of S. Consider arbitrary δ > 0 and its
corresponding neighbourhood Nδ(p).

Take δ′ = δ/2, and n′ > 0 such that 1/n′ < δ′. Consider Nδ′(p). There are two cases.
Case 1: A point q ∈ S1/n′ is in Nδ′(p), Then it is also in Nδ(p).
Case 2: No point q ∈ S1/n′ is in Nδ′(p). Then for any z ∈ Nδ′(p) some point q ∈ S1/n′

exists such that d(z, q) < 1/n′. It follows δ = δ/2+ δ/2 > δ′+1/n′ > d(p, z)+d(z, q) ≥
d(p, q). In other words, q ∈ Nδ(p).

Problem 4

Proposition 1. The distance function d : X × X → R in a metric space X is
continuous.

Proof. Fix (a, b). Let ϵ > 0. We can take small enough δ such that d(a, x) < ϵ/2 and
d(b, y) < ϵ/2. By the triangular inequality d(x, y) ≤ d(x, a) + d(a, b) + d(b, y). Hence
|d(x, y)− d(a, b)| < |d(x, a) + d(b, y)| < ϵ.

Proposition 2. The function g(x) = d(x, f(x)) is continuous over X.

Proof. Define a vector-valued function h(x) = (h1(x), h2(x)) where h1(x) = x is the
identity and h2(x) = f(x). Then h is continuous, and so is the composite function
g = d ◦ h.

Theorem. Problem statement.

As before let g : X → R by x 7→ d(x, f(x)). The image {d(x, f(x)) | x ∈ X} is lower-
bounded by 0. Since X is non-empty and R has the greatest-lower-bound property,
It follows inf X = m exists. Assume for contradiction m > 0. By thm 4.16, p 89,
rudin, there is a point p0 ∈ X where g(p0) = m = d(p0, f(p0)). But we are given
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d(f(p0), f
2(p0)) < m, i.e g(f(p0)) < g(p0). Contradiction. Therefore inf X = 0 and

there’s a point p such that g(p) = d(p, f(p)) = 0, implying f(p) = p.
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