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Problem 1

The required conditions follow naturally as:

o d(x,x) =+/d(z,x) =+0=0.

o If d(z,y) > 0 then d'(x,y) > 0 as the square root of non-zero is non-zero.
Otherwise 0% = 0 contradicting the fact d'(z,y) > 0.

o d(z,y)=/d(z,y) = /d(y,z) =d(y,x).
. Zigx,y)) = /d(z,y) < \/d(x,r)—i—d(r,y) < \/d(x,r) + \/d(r,y) = d'(x,r) +
r,Y).

For an arbitrary open-set of d, {y | d(x,y) < r} there is an equivalent open-set of d’,
{y | d(z,y) < /r}. For an arbitrary open-set of d’, {y | d'(z,y) < r}, there is an
equivalent open-set of d, {y | d(x,y) < r?}.

Note. Some good friends assisted in solving this problem.
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Problem 2

Lemma. For any point p in R, There exists a smallest element in the set {¢ € F | ¢ >

p}



Assume to the contrary that no smallest element exists. Then as the set is bounded
below, the infimum exists, and is a limit point. That contradicts our hypothesis of no
limit points in F.

Corollary. EN Rt = ET has a smallest element

By the above lemma set p = 0.

Corollarly. Given x; € E™ there exists a smallest element among E* N {y | y > z;}
By the above lemma set p = x;.

Now we have a counting scheme on ET. What is remaining now is to prove every
element in £ will be hit eventually. The following lemma suffices.

Lemma. there are finitely many elements in E N [—|a, |al]

Assuming the contrary for the sake of contradiction, We get infinite elements in £ N
[—|al, |a|]. Those are present in both E and [—|al,|a|] by definition. Since [—|al,|al]
is compact we know any infinite subset has a limit point (Theorem 2.41, p. 40 in
baby-rudin). But then we get a limit point in E. Contradiction

Similarly we can prove EN R~ = E~ is countable, and hence FE is countable also.
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Note. 2 Through chatting with good friends a cleaner alternative proof can be made
as, "Because E has no limit points it is closed. Assume E is uncountable. Then there is
an integer n such that intersection with [n,n+1] is also uncountable. This intersection
is closed and bounded, thus compact. So we can take a sequence inside this intersection
and it will have a convergent subsequence contradicting the assumption on limit points”



Mostafa Touny Yesterday at 11:.09 PM
| conjecture the following approach: Establish an enumeration process of sequence x_i in E, And prove there is a discrete minimum
distance from x_i to x_i+1.

Even if my approach is correct, | feel the proof is going to be complicated, and that there's a cleaner way.

Do you think the approach | articulated is a good one or tedious as | guessed?

Yesterday a 2

Why are you assuming that E is countable?

esterday at 11:12 PM
Do you need to assume E is countable to do the enumeration x_i to begin with?

-

Mostafa Touny .
No
| would consider R+ first and show that E restricted to it has a smallest point. Otherwise a limit point would be present.

| guess my technigue is clear now

FShrike on MSE Today a
If I'm not mistaken, a set with no limit points is necessarily discrete (in any Hausdorff space) and the only discrete subsets of R are
countable

| think there's a cute way us

Because E has no limit points it is closed. Assume E is uncountable. Then there is an integer n such that intersection with [n,n+1] is also
uncountable. This intersection is closed and bounded, thus compact. So we can take a sequence inside this intersection and it will
have a convergent subsequence contradicting the assumption on limit points

[ ] ause E has no points it is closed. Assume E is uncountable. Then there is an integer n such that inte

u gotta specify distinct elements of sequence

Suppose $n(x)=\inf{m\in\bN \mid |B(x, 1/m) \cap E| = 1}$ for $x\in E$. Then $n(x)\in\bN$ and ${B(x.1/n(x))}_{x\in E}$ is an open cover
of $E$. Since $\bR$ is heredetarily Lindelsf, in the sense of the link | post, there is a countable subcaver. However, since this cover
consists of disjoint subsets of $E$ that contain exactly one member of $E$, this countable subcover must be exactly the original cover
and since $E$ is in bijection with this cover, $E$ must be countable,
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Because E has no limit points it is - ist untable en t an integer n such that inter:
Mostafa Touny Today at8:5
E is uncountable. Then there is an integer n such that intersection with [n,n+1] is also uncountable

Would you recommend me a resource for this?

Assume the negation. Then $E$ is the union of disjoint countable sets $E\cap [n,n+1]$, and a countable union of countable sets is
countable. But $E% is uncountable
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Problem 3

Assume for the sake of contradiction that the process does not stop after a finite number
of steps. Then the sequence x; is infinite. Consider the infinite subset {z;} = Ss; By
hypothesis it has a limit point in X, Call it p. So for neighbourhood Ns/4(p), some
point ¢; # p is in that neighbourhood. Let r; = d(p,q1). Consider neighbourhood
Ny, 2(p); Clearly ¢; is not in it. So there is a point ¢» # ¢ in it. We have now
distinet points ¢1,q2 € S such that d(p,q1) < §/4 and d(p,q2) < /4. Tt follows
d(q1,q2) < d(q1,p) +d(p,q2) < 9/4+6/4 = §/2. But the construction of sequence x;
stipulates every pair of points is of distance at least §. Contradiction.

It follows by the above lemma, that for any point p in X, the distance between it and
some x; of S is strictly less than §. Therefore p is covered by Nsz;.

Now we prove X is separable. We know for each § = 1/n, The corresponding subset
S1/n is finite. Clearly U,S;,, = S is countably infinite. It suffices to show, For a point
p € X — S, it can get arbitrarily close to points of S. Consider arbitrary ¢ > 0 and its
corresponding neighbourhood Ns(p).

Take §' = 6/2, and n’ > 0 such that 1/n’ < ¢§’. Consider Ny (p). There are two cases.
Case 1: A point ¢ € S,y is in Ny(p), Then it is also in Ns(p).

Case 2: No point ¢ € Sy is in Ny(p). Then for any z € Ny(p) some point ¢ € Sy
exists such that d(z,q) < 1/n'. It follows 6 = §/2+6/2 > & +1/n’ > d(p,2z) +d(z,q) >
d(p,q). In other words, ¢ € Ns(p).

Problem 4

Proposition 1. The distance function d : X x X — R in a metric space X is
continuous.

Proof. Fix (a,b). Let € > 0. We can take small enough ¢ such that d(a,z) < ¢/2 and
d(b,y) < €/2. By the triangular inequality d(z,y) < d(x,a) + d(a,b) + d(b,y). Hence
|d(z,y) = d(a,b)] < |d(z,a) +d(b,y)| <e.

Proposition 2. The function g(z) = d(z, f(x)) is continuous over X.

Proof. Define a vector-valued function h(z) = (hq(z), ho(z)) where hi(xz) = x is the
identity and hs(x) = f(x). Then h is continuous, and so is the composite function

g=doh.
Theorem. Problem statement.

As before let g : X — R by x — d(z, f(x)). The image {d(x, f(x)) | x € X} is lower-
bounded by 0. Since X is non-empty and R has the greatest-lower-bound property,
It follows inf X = m exists. Assume for contradiction m > 0. By thm /.16, p 89,
rudin, there is a point py € X where g(po) = m = d(po, f(po)). But we are given



d(f(po), f2(po)) < m, i.e g(f(po)) < g(po). Contradiction. Therefore inf X = 0 and
there’s a point p such that g(p) = d(p, f(p)) = 0, implying f(p) =
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