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Problem. 1

Lemma. 1 If xn+1 ≤ λxn, where 0 ≤ λ < 1, Then the sequence {xn} gets artbitrarily
small
Clearly x1+k ≤ λkx1, by substituting successive terms in the inequality. Given ϵ > 0
we can reach λkx ≤ ϵ by setting k ≥ logλ y/x.

Fix any x in the metric space, Then construct the following sequence: {fn(x)} =
f 0(x), f 1(x), f 2(x), . . . . We prove it is cauchy. Consider d(fn(x), fm(x)) of some tail
where n < m. By the triangular inequality, We know the distance is upper-bounded
by d(fn(x), fn+1(x)) + d(fn+1(x), fn+2(x)) + · · · + d(fm−1(x), fm(x)) ≤ (m − n +
1) λn−1 d(f 1(x), f 2(x)). By Lemma 1 and substituting distances by a sequence {xn}
our intended result is concluded.

Given X is complete we know our sequence {fn(x)} converges. Call it q. We show it
converges also to f(q), and by the uniqueness of limits, The main theorem of f(x) = x
for some x is concluded. Observe d(fn+1(x), f(q)) ≤ d(fn(x), q), but the right hand
side of the inequality is arbitrarily small. .

Note. This problem was solved with assistance by wonderful friends. The main key
idea of using the uniqueness of limits was given by them. See the following chat:
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Problem. 2

Suppose (xk) converges to q. Let ϵ > 0 be arbitrary. We already have N0 where for
any k ≥ N0 xk − q < ϵ. For a given permuted sequence (xg(k)), We now show there’s
N1 where for any n ≥ N1, x

′
n − q < ϵ.

Observe x1, . . . , xN0−1 are finite. Consider indices g(1), . . . , g(N0 − 1) and take the
maximum. Call it gmax(N0 − 1). Clearly for any index i greater than it, we know x′

i

is not equal to any one of x1, . . . , xN0−1. So it is contained in the trail xN0 , xN0+1, . . . .
Thus, x′

i − q < ϵ for any i > gmax(N0 − 1).

It is not true if we dropped the assumption that g is one-to-one. A counter example is
a permutation function whose range is exactly one element of N .
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Problem. 3

The is exactly the same as theorem 3.4 in Rudin’s page 50.

Problem. 4

Lemma. vp(p
k + pk+1 + · · ·+ pk+m) = k.

Observe pk + pk+1+ · · ·+ pk+m = pk(1+ p1+ · · ·+ pm). Moreover p ∤ (1+ p1+ · · ·+ pm)
as p | (p1 + · · ·+ pm). It holds if m = 0.

Theorem. (xi) =
∑i

j=0 p
i is a cauchy sequence.

Let ϵ > 0 be arbitrary. By the Archimedean property ∃N, 1/N < ϵ. Set Hϵ = N and
n,m ≥ Hϵ.

if n = m, then d(xn, xm) = 0 ≤ ϵ.

WLOG assume n > m. It follows

d(xn, xm) =

∣∣∣∣∣
n∑

j=0

pj −
m∑
j=0

pj

∣∣∣∣∣
p

=

∣∣∣∣∣
n∑

i=m+1

pi

∣∣∣∣∣
p

vp

(
n∑

j=m+1

pj

)
= vp(p

m+1 + pm+2 + · · ·+ pn) = m+ 1

Hence d(xn, xm) = p−(m+1) ≤ 1
m+ 1 ≤ 1

N < ϵ, for all n,m ≥ N .

Theorem. Convergence when p = 2.

Observe (xi) =
∑i

j=0 2
i = 2i+1 − 1, ∀i ≥ 0.

Then d(xi,−1) = d(2i+1 − 1,−1) = |2i+1 − 1− (−1)|2 = |2i+1|2 = 2−(i+1).

Now as i → ∞, d(2i+1 − 1,−1) → 0, i.e limi→∞ 2i+1 − 1 = −1.

A more careful proof. set ϵ > 0, then by the Archimedean property ∃N, 1/N < ϵ. Set
Hϵ = N . Then for i ≥ Hϵ, 2

−(i+1) ≤ 1/N ≤ ϵ.
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