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Problem. 1

By boundedness we get |f(x)| ≤ Mf and |g(x)| ≤ Mg. Clearly there is Ng such that
for n ≥ Ng, |gn(x)| ≤ Mg + ϵg.

Let ϵ > 0 be arbitrary. Define ϵ0 =
ϵ

2(Mg + ϵg)
and ϵ1 =

ϵ
2(Mf )

.

By hypothesis we have can take Nmax considering also Ng to get

|fn(x)− f(x)| < +ϵ0

|gn(x)− g(x)| < +ϵ1

By multiplication,

|fn(x)gn(x)− f(x)gn(x)| < +ϵ0 · |gn(x)|
|f(x)gn(x)− f(x)g(x)| < +ϵ1 · |f(x)|

Now observe:

|fn(x)gn(x)− f(x)g(x)| = |fn(x)gn(x)− f(x)gn(x) + f(x)gn(x)− f(x)g(x)|
≤ |fn(x)gn(x)− f(x)gn(x)|+ |f(x)gn(x)− f(x)g(x)|
< ϵ0|gn(x)|+ ϵ1|f(x)|
≤ ϵ0(Mg + ϵg) + ϵ1(Mf )

= ϵ/2 + ϵ/2 = ϵ

The second line follows by triangular inequality.

Problem. 2

Lemma. f̂ is of the same class.

By definition, The domain of f̂ is the same as f . Clearly f̂(0) = 1
4f(2 · 0) =

1
4f(0) =

1
4(0) = 0 and f̂(1) = 3

4f(2 · 1− 1) + 1
4 = 3

4f(1) +
1
4 = 3

4(1) +
1
4 = 1.

The continuity of f̂ follows by the continuity of f . Consider arbitrary f̂(q) and ϵ > 0.

Consider the case of f̂(q) = 3
4f(2q− 1)+ 1

4 and note the other case is symmetric. Take

ϵ̀ = 4
3ϵ. By continuity of f , There exists δ such that for any r, if |r − p| < δ then
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|f(r)− f(p)| < ϵ̀. Define δ̀ = δ
2, and observe for any r:

If |r − q| < δ̀ =
δ

2
Then |(2r + 1)− (2q + 1)| < δ

By Continuity |f(2r + 1)− f(2q + 1)| < ϵ̀ =
4

3
ϵ

Then |(3
4
f(2r + 1) +

1

4
)− (

3

4
f(2q + 1) +

1

4
)| < ϵ

By definition |f̂(r)− f̂(q)| < ϵ

Lemma. d(f̂ , ĝ) ≤ 3
4d(f, g).

If x ≥ 1
2,

|f̂(x)− ĝ(x)| = |(3
4
f(2x− 1) +

1

4
)− (

3

4
g(2x− 1) +

1

4
)|

= |3
4
f(2x− 1)− 3

4
g(2x− 1)|

= |3
4
f(y)− 3

4
g(y)|

=
3

4
|f(y)− g(y)|

where we define y = 2x− 1.

Since |f̂ − ĝ| is defined in terms of |f − g|, Observe the maximum of |f − g| yields the
maximum of |f̂ − ĝ|.

Lemma. Exactly one f where f̂ = f .

Assume we have f̂ = f and ĝ = g. By the previous lemma, d(f, g) = d(f̂ , ĝ) ≤ 3
4d(f, g).

This is true only if d(f, g) = 0 which concludes |f(x) − g(x)| = 0 for all x. In other
words, f = g.

Problem. 3

We use the following theorem found in Rudin’s book in page 59.
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Fix x ∈ [a, b]. The theorem follows by the following lemmas

� (i)
∑m

k=n fk(x) ≥ 0 for odd n.

� (ii)
∑m

k=n fk(x) ≤ 0 for even n.

� (iii) Given fn(x) = +M for odd n and non-negative M ,
∑m

k=n fn(x) ≤ M .

� (iv) Given fn(x) = −M for even n and non-negative M ,
∑m

k=n fn(x) ≥ −M .

Proof.

(i). Follows by a strong form of induction. Observe for odd n, |fn(x)| ≥ |fn+1(x)| yields
fn(x)+ fn+1 ≥ 0. The induction step is to show

∑m+2
k=n fk(x) ≥ 0 given

∑m
k=n fk(x) ≥ 0

and
∑m+1

k=n fk(x) ≥ 0.

(ii). Symmetric to (i).

(iii) Expand to fn(x) +
∑m

k=n+1 fk(x), Then it follows immediately by (ii)

(iv). Symmetric to (iii).

Theorem. These lemmas conclude, Given fn(x) = M regardless n is even or odd,
|
∑m

k=n fk(x)| ≤ |M |. But we are given fn(x) converges to 0, So we can substitute M
by any ϵ > 0.
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