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Problem. 1
By boundedness we get |f(z)| < My and |g(x)| < M,. Clearly there is N, such that
for n > N, |gn ()] < My + €.

Let € > 0 be arbitrary. Define ¢y = ) and €; =

____€ __€
Q(Mg + € 2(Mf)‘

By hypothesis we have can take IV,,,, considering also N, to get

|fo(2) = f(2)] < +€o
[gn(7) — g(2)| < +e

By multiplication,

(@) gn(2) = f(2)gn(2)] < 460 - [gn(w)|
f(@)gn(x) = f2)g(x)] < +e1-[f(2)]

Now observe:

(@) gn(x) = f(2)g(2)] = [ fu(@)gn(2) = F(2)gn(x) + f(2)gn(z) = f(2)g(2)|
< fu(@)gn (@) = f(2)gn (@) + [f(2)gn(2) — f(2)g(2)]

< colgn(a)| + 1) f (@)
< eo(M, + €,) + e (My)
=€/2+¢/2=¢

The second line follows by triangular inequality.

Problem. 2

Lemma. f is of the same class.

By definition, The domain of f is the same as f. Clearly f(O) = %lf(Z -0) = %Lf(O) =
o)y=0and f1)=3f2- 1-D+t=3r+i=30)+1=1

The continuity of f follows by the continuity of f. Consider arbitrary f(g) and € > 0.

Consider the case of f(q) = % f(2¢—1)+ le and note the other case is symmetric. Take

¢ = €. By continuity of f, There exists § such that for any r, if |[r — p| < § then

I~



|f(r) — f(p)| < & Define 5= %7 and observe for any 7:

0
2
Then [(2r+1)—(2¢+1)| < 9§

If [r—gl <=

4
By Continuity |[f(2r+1) — f(2¢+1)| < ¢ = =e

3
Then ](zf@r +1)+ i) - (%f@q +1)+ ;1)] <€
By definition |f(r) — f(q)| < €
Lemma. d(f, g) < %d(f, q9).
Ifz> %,
7(@) — )| = G F(2r — 1)+ 3) — (o2 — 1)+ )]
3 3
= |§f(2$ —?1)) — 792z = 1)
=17F W) = 79)l
= %If(y) —9(y)|

where we define y = 2z — 1.

Since | f — g is defined in terms of |f — g[, Observe the maximum of |f — g| yields the
maximum of |f — g|.

Lemma. Exactly one f where f = f.

Assume we have f = f and § = ¢g. By the previous lemma, d(f,g) = d(f, g) < %d(f, g).
This is true only if d(f,g) = 0 which concludes |f(x) — g(x)| = 0 for all z. In other
words, f = g.

Problem. 3

We use the following theorem found in Rudin’s book in page 59.

3.22 Theorem Za, converges if and only if for every € > 0 there is an integer
N such that

6) ARY:
k=n
ifmzn2zN.




Fix x € [a,b]. The theorem follows by the following lemmas

e (i) >0 fe(x) >0 for odd n.

o (i) > - fu(z) <0 for even n.

e (iii) Given f,(z) = +M for odd n and non-negative M, " f,(z) < M.

e (iv) Given f,(x) = —M for even n and non-negative M, > ;"  f.(z) > —M.
Proof.

(i). Follows by a strong form of induction. Observe for odd n, |f.(z)| > | fos1(z)| yields
fo(®) + for1 > 0. The induction step is to show Y72 fi.(2) > 0 given 37" fu(z) >0
and Y7 fi(2) > 0.

(ii). Symmetric to (i).
(iii) Expand to fu(z) +>°,2, 1 fe(2), Then it follows immediately by (ii)
(iv). Symmetric to (iii).

Theorem. These lemmas conclude, Given f,(x) = M regardless n is even or odd,

| S e, fu(z)| < |M|. But we are given f,(z) converges to 0, So we can substitute M
by any € > 0.
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