Lab 01

. El-Shaarawy, & M. Touny

October 22, 2023

Contents

Exercises
114

S OO UL W W NN

Exercises

Design Thinking
e Definition. well-define special keywords like ezhaustive search, floor, square.

e Break. Break the big problem into subproblems.

Partial Progress. Solve subproblems or relaxed versions.

Concrete examples. Try on concrete cases.

Generalize. Spot the pattern generalizable on any case conforming to the general
definition.

e Connect Ideas. Figure whether the different ideas and solutions can combined.
Algorithmic Hints

e Are there redundant computations?

1.1.4
Hints

e You are given a square number n. Given some integer k, How can we verify it is
the root?

e Follow the exhaustive search strategy, to find the root of n.

e You are given a real number r. Given some integer k, How can we verify it is the
floor of 77

e Follow the exhaustive search strategy, to find the floor of n.

e Combine all previous hints to find a unique definition of |y/n].

e Follow the exhaustive search strategy, to solve the main problem.
Solution

for i inn-1 .. 0O
if (1)7°2 <= n
return i

1.1.8
Hints

e Try this case on concrete examples like m = 2 and n = 3.

e Why m mod n =m when m < n?

e Recall the definition of mod . What are the possible ranges of x mod n for any
integer x?

Solution
It shall swap them as » = m mod n =m when m < n.

Only once. Given m > n, Necessarily n > m mod n.

1.2.5
Hints

e Convert a concrete decimal number to binary. Observe how the right most digit
from the binary representation is obtained.

e Given a binary representation, What is the number we divide on it, so that the
quotient eliminate the right most digit?

e Follow the Decrease and Conquer strategy, with the above two hints, to solve the
problem.

Solution

DecToBin(n) :
input: integer n
output: binary representation as a list

binary representation

1=1[]

while n != 0:
kth digit from right to left
b.appendLeft(n % 2)

remove the rightmost digit
division output is an integer
n =n/2

Algorithm 1 Convert to the binary representation of a given integer

Require: input is integer n
Ensure: output is a list of binary digits
AR H
while n # 0 do
[< [n mod 2] UI.
n < n/2
end while

1.2.9
Hint

e Are there duplicated computations?

e Are there pairs tested twice?

e Observe |a —b| = [b— al.

e If we checked all elements with A[i], Do we need to test A[j] with A[i]?
Solution

MinDistance(A):
input: array of size n
output: minimum distance between two distinct elements

dmin = infinity

for i in O .. n-1:
for j in i+1 .. n-1:
dis = | A[i] - A[3] |

if dis < dmin:
dmin = dis

Algorithm 2 Find the minimum distance between two distinct elements in an array

Require: input is array A[0..n — 1] of numbers

Ensure: output is the minimum distance between any two distinct elements
1: dmin < oo
2: fori=0ton—1do
33 forj=14+1ton—1do

4 dis < |Ali] — A[j]|

5 if dis < dmin then
6: dmin < dis

7 end if

8: end for

9: end for

10: return dmin

1.3.1
Hints

e if Afi] == A[j] which index shall be counted? What can we conclude about S?
Solution

a. Tedious to typeset.

b. No. Observe counting only happens when strictly ¢ < j. If Afi] == A[j] then the
code counts A[i] not A[j]. Therefore A[i] shall succeed A[j]. In fact equal cells are
reversed in the sorted array.

c. No. It does not modify array A but output is a different array S.

1.3.10
FAILED TO SOLVE.

1.4.2
Hint

e For ascendingly ordered array A, Is it possible for the target value t to exist in
Ali..n — 1] given the fact ¢ > A[i]?

e Use the above hint to prune the search space.

e Which index of the array you think shall prune the greatest search space.
Solution
For target value t:

a. Access some element x in the array. If ¢ # x, We can ignore searching in the
right /left side of x.

b. While linear scanning, Terminate the algorithm earlier once some Ali] > t.

1.4.10
Hints
e [s it possible for two strings to be anagrams in case they different lengths?

e [s it possible for two strings to be anagrams if one of them has a character not
present in the other?

e You can convert a character to its corresponding ascii number. Use that for a
cheaper data strucutre.

e the ascii number corresponds to an index.
Solution
Two strings are anagrams if and only if they have the same count of characters.

AreStringsAnagrams(A, B):
input two strings

output True if anagrams and False otherwise

if lengths are not the same, then not anagrams
if length(A) != length(B):
return False

initialize characters counts to zeros for both strings
A_chCount = B_chCount = [0] * 26

Count characters in both strings
for ch in A:
A_chCount [int(ch)]

A_chCount[int(ch) 1 + 1

for ch in B:
B_chCount[int(ch)]

B_chCount[int(ch)] + 1

Anagrams if and only if characters count is exactly the same
return A_chCount == B_chCount

Algorithm 3 Detect whether two strings are anagrams

Require: input is two strings

Ensure: output True if anagrams and False otherwise
. if |A| # |B| then

return false

3: end if

[N

4: Acount — Bcount — H x 26

5. for ch € A do
Acount [Ch] — Acount [Ch] + 1
7. end for

8: for ch € B do

9: Bcount [Ch} < Bcount [Ch] + 1
10: end for

11: I‘eturn Acount _= Bcount

	Exercises
	1.1.4
	1.1.8
	1.2.5
	1.2.9
	1.3.1
	1.3.10
	1.4.2
	1.4.10

