
Lab 03

I. El-Shaarawy, & M. Touny

October 22, 2023

Contents

Exercises 2
3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1



Notes

� Students are not, and had not yet taken, Algorithm design by recursion. The
chapter and many problems rely on it.

Post-lab Tasks

� On Ex. 3.2.8, Do you see any advantage for computing the exact number of
basic operations? What if you knew there are at most a constant c occurences of
character A, Is our upper-bound flawed in this case?

Exercises

3.1.4

Hints

� Observe we can derive xi from xi−1, so we don’t need to recompute

Solution

Same as manual:
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3.1.14

Homework

3.2.8

Hints

� Following the definition, If you knew S[i] = A, and S[j] = S[z] = B for j, z > i,
What can you infer?

� Utilize that observation in algorithm design.

� Consider a flag which stores whether character A is read.

� Generalize for a variable that counts how many A was read.

Solution

(a)

def count_substrings_starting_with_a_ending_with_b(S[0..n-1]):

count = 0

for i in 0..n-2

if S[i] == A

for j in i+1..n-1

if S[j] == B
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count = count + 1

return count

The number of basic operations is upperbounded by
∑n−2

i=0

∑n−1
j=i+1 1 = O(n2).
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(b)

def count_substrings_starting_with_a_ending_with_b(S[0..n-1]):

count_a = 0 # Count of ’A’ characters encountered so far

count_ab = 0 # Count of substrings starting with ’A’ and ending with ’B’

for i in 0..n-2:

if S[i] == A

count_a = count_a + 1

else if S[i] == B

count_ab = count_ab + count_a

return count_ab∑n−2
i=0 1 = Θ(n). Observe count of basic operations is exactly 1 per iteration.

3.2.9

Homework

3.3.3

Homework

3.3.9

Hints

� Think of a unique property about extreme points, in terms of coordinates.

� What can you conclude about the point of maximum x or y coordinates?

Solution

# input: array of points, each point is a tuple of x and y coordinates

# output: a list of exactly two extreme points

def find_extreme_points(P[0..n]) # given n >= 2

# Initialize extreme points with the first point in the set

min_x_point, min_y_point = P[0]

max_x_point, max_y_point = P[0]

# Iterate through the remaining points

for i in P[1..n]

x, y = i
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# Update max_x_point and max_y_point if needed

if x > max_x_point:

max_x_point = x

max_y_point = y

else if x == max_x_point and y > max_y_point:

max_y_point = y

# Update min_x_point and min_y_point if needed

if x < min_x_point:

min_x_point = x

min_y_point = y

else if x == min_x_point and y < min_y_point:

min_y_point = y

return [(min_x_point, min_y_point), (max_x_point, max_y_point)]

3.4.6

We assume the problem would always have a solution. We leave it as an exercise for
students to detect the case of the non-existince of any solution.

Hints

� What can you conclude about the total sum of the whole set, given we have a
partition of two subsets, each of total sum p?

� If we selected a subset whose sum is k, How do we compute the total sum of the
remaining elements?

� Consider the special case of finding a single subset whose total sum is p.

� Design your algorithm to only rely upon searching through the domain of subsets.

Solution

There is an elegant generator based on binary numbers. Since this is not the core focus
of the question, We show an easier to understand code by recursion.

def generate_subsets(A[0..n-1]):

if n == 0:

return [ [] ]

# Generate subsets without the last element

subsets_without_last = generate_subsets( A[0..n-2] )
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# Add the last element to each subset in subsets_without_last

subsets_with_last = [ subset + [A[n-1]] for subset in subsets_without_last ]

# Concatenate subsets with and without the last element

return subsets_without_last + subsets_with_last

3.4.9

Homework.

3.5.7

Homework

3.5.8

Hints

� The hinted picture of 2-colorable might be more useful.

� Try to construct a 2-colorable labeling on given graphs. Observe by symmetry
you can start anywhere and with any colour.

� What if a vertex must be coloured with two different colours from two different
vertices? Can we conclude colouring impossibility?

Solution

(a)

modify dfs function in page 124 to maintain a two colours switching for each level,
rather than count.

def switchColour(input_colour)

if input_colour is white

return black

if input_colour is black

return white

def dfs(v, current_colour)

if v.colour == NULL

v.colour = current_colour

else

return v.colour == current_colour

for each vertex w in V adjacent to v

if not dfs( w, switchColour(current_colour) )
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return False

return True

(b)

modify bfs to maintain the depth alongside the vertex in the queue, and then colour
according to whether the depth is even or odd.

def colourByDepth(depth_input)

if depth_input is even

return white

if depth_input is odd

return black

def bfs(v)

set v.depth = 0

v.colour = colourByDepth(v.depth)

initialize a queue with v

while the queue is not empty do

for each vertex w in V adjacent to the front vertex f

if w.colour == NULL

w.depth = f.depth + 1

w.colour = colourByDepth(w.depth)

add w to the queue

else

if w.colour != colourByDepth(f.depth+1)

return False

remove the front vertex from the queue

return True
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