Lab 04

. El-Shaarawy, & M. Touny
October 22, 2023
Contents

Notes

Exercises

N

N OO OO W W

Instructor Notes

Lemma. |logn]| + 1= [log(n + 1)].

We know n = 2F + r for some £k > 0 and 0 < r < 2% By FEuclid’s Theorem and
Archimedean Property. Then

k41 =1og 2" > log(2" + 7 + 1) > log(2" +7) > log2F = k

Thus, [log(n+1)] = [log(2* + 7 +1)] =k + 1 and [log(n +1)| = |log(2" +1)| = k.

Lemma. Given n, If we repeatedly apply the operation [n/2]| Then we reach 1 after
exactly [logn| + 1.

Consider n but in binary representation (dyds . .. d)s2, where d; = 1. Then by definition
(dids . ..dy)2/2 yields a quotient (d;...dg_1) and remainder d;. Since we are taking
floor, We can safely ignore di. It is easy to we reach d; = 1 after exactly k—1 operations.
But we know k& = |logn].

Exercises

4.1.4
Hints

e Consider the fact, for a fixed element k, All subsets either contain k, or does not
contain k.

e Given all subsets not containing k£, What do we generate when we append k to
each subset?

Solution
Top-down

def generateSubsets(A[0..n-1])
base case, empty subset
if A.length ==
return [[]]

lastElement = A[n-1]

smaller instance solution
subsetsWithNoLast = generateSubsets(A[0..n-2])

generate new solutions from smaller instance
subsetsWithLast = []

for subset in subsetsWithNoLast
subsetsWithLast.append(subset + [lastElement])

concatenate solutions
return subsetsWithNolLast + subsetsWithLast

Bottom-up (Iterative Improvement)

def generateSubsets(A[0..n-1]):
n = A.length
allSubsets = [[]]

for i in 0..n-1:
newSubsets = []
for subset in allSubsets:
newSubsets.append(subset + [A[i]])
allSubsets = allSubsets + newSubsets

return allSubsets

4.1.10

Homework.

4.2.3

(a) In matrix implementation ©(|V]?), and in adjacency list implementation O(|V] +
|E|). Careful analysis won’t be shown as it is outside the scope of the lab, especially
that students lack data structures foundations.

(b)
Hints

e Consider a stack data structure

e Think in terms of recursion, Given a solved smaller instance, How do we augment
it to reach a greater instance?

Solution

a node is inserted in stack, only after calling its subgraph
Input: node, visited nodes list, stack
Output: NULL
def dfs(node, visited, stack):
visited.add(node)

for neighbor in graph[node]:
if neighbor not in visited:
dfs(neighbor, visited, stack)

stack.insert (node)

Input: directed graph in adjacency list implementation
Output: Topological order of the graph
def topologicalSortDfs(graph G):

visited = set() # no multiple occurences in sets

stack = []

can be omitted if we assumed graph’s connectivity
and given a unique root (tree)
for node in G(V):
if node not in visited:
dfs(node)

return stack

Another simpler implementation not based on DFS as a bonus answer. Preferred to
students over DF'S based implementation.

Input: directed graph in adjacency list implementation
Output: Topological order of the graph
def topologicalsortRecursive(graph G):

visited = set() # multiple occurences in sets

stack = []

for node in G(V):
if node not in visited:
visited.add(node)
topologicalSortRecursive(graph[node], visited, stack)
stack.insert (0, node)

return stack

4.2.8

Homework.

4.3.7
Hints

e For each bit string of size n — 1, If we added 0, What do we generate?
e Combine adding 0 and 1.
Solution

Input: Positive integer n
Output All bit strings of length n
def generateAllBitStrings(n):
base case
if n ==
return ["0", "1"]
else
smaller instance solution
smallerInstanceStrings = generateAllBitsStrings(n-1)

generate n instance from smaller instance

nInstanceWithZero = []
for bitString in smallerInstanceStrings
nInstanceWithZero.append(bitString + "0")

nInstanceWithOne = []
for bitString in smallerInstanceStrings
nInstanceWithOne.append(bitString + "1")

return nInstanceWithZero + nInstanceWithOne

4.3.10

Homework.

4.4.2

Hints
e Consider n separation, in case it is odd, and in case it is even.
e If odd, subtract from it only 1, to get an even number

e Since we are taking floor, We only need to care about the new even number. I.e
we won't count.

Solution

def floorLog2Recursive(n):

Base case

log2(1) =0

if n ==
return O

n is even
if n % 2 == 0:
return 1 + floorLog2Recursive(n/2)

n is odd
else
return 0 + floorLog2Recursive((n-1)/2)
Since we consider floor, the remainder does not count

4.4.9

Homework.

4.5.12

Homework.

4.5.13
Hints

e Given the target ¢t > cell ¢, for some cell in the matrix. Which elements of the
matrix can we exclude from the search?

e Consider the case if the cell ¢ is at the corner.
e Try to reduce the problem size by 1.

Solution

Recursive implementation

Input: n x n Matrix, and target value t
Output: tuple (row, column) of the element found, or -1 if not found
def searchMatrixRecursive(matrix M[0..n-1, 0..n-1], target t, row, col):
if row >= n or col < O:
return -1

Base case
if M[row] [col] ==
return (row, col)

Call smaller instances
else M[row] [col] < t:

return searchMatrixRecursive(M, t, row + 1, col)
else:

return searchMatrixRecursive(M, t, row, col - 1)

def searchMatrix(Matrix M[0..n-1, 0..n-1], target t)
initialize with row = 0 and column = n-1
return searchMatrixRecursive(M, t, 0, n-1)

Upperbounded by 2n = O(n) by the recurrence T'(q) = T'(¢ — 1) + 1, where ¢ = n + n,
the sum of columns and rows number.

Bottom-up implementation (iterative improvement)

Input: n x n matrix and target value t
Output: tuple (row, column) of the element found, or -1 if not found
def searchMatrixBottomUp(matrix M[0..n-1, 0..n-1] , target t):

row = 0

col = n-1

while row < n and col >= 0:
if M[row] [col] == t:
return (row, col)

if M[row] [col] < t:
row = row + 1
else:
col = col - 1
return -1
Upperbounded by 327", 2 = 2(2n) = O(n), the sum of columns and row numbers.

P.S. It might be more elegant to consider three-comparison as a single operation. For
our students we omit this discussion.

	Notes
	Exercises
	4.1.4
	4.1.10
	4.2.3
	4.2.8
	4.3.7
	4.3.10
	4.4.2
	4.4.9
	4.5.12
	4.5.13

