Lab 06

. El-Shaarawy, & M. Touny

December 7, 2023

Contents

Exercises

© 00 0~ ~J U kW wNn NN

Exercises

6.1.1
(a).
Hints
e Sort the array as a preprocessing step.

e Given a sorted array, and an adjacent pair Ali], A[i + 1], Could the distance
between Ali] and A[j] where j > i+ 1, be strictly less?

e Use that to design your algorithm.
Solution

input: Array of integers
output: minimum distance between any pairs
def ClosestDistance(A[0..n-1])

Transformation: Sort the array
A sort()

Initialize minimum distance to | A[0] - A[1] |
minDistance = abs(A[0] - A[1])

Iterate and compute the distance between adjacent elements
for i in 1..n-1:
currentDistance = | arr[i] - arr[i + 1])

Update the minimum distance if the current distance is smaller
if currentDistance < minDistance:
minDistance = currentDistance

Return the minimum distance
return minDistance

(b). Homework.

6.1.2

Homework.

6.2.4
We ask students whether ©(n?) — ©(n?) + O(n?) = O(n?).

Hints
e Try to given a counter example where coefficients cancel each other.
Solution

We show it is not true in general true by the counter example Ty (n) = n3, Ty(n) = 2n?,
and T3(n) = n.

Analysis of the algorithm is left as a homework.

6.2.5

Homework.

6.3.5
(a)
Hints
e The idea is similar to binary search tree
Solution

input: non-empty graph, by its root
output: smallest element
def find_smallestKey(root):

node = root

while node.left is not Nomne
current = current.left

return current.key
input: non-empty graph, by its root
output: largest element
def find_largestKey(root):

node = root

while node.right is not None:
node = node.right

return current.key

input: non-empty graph, by its root
output: difference between largest and smallest elements

def range(root)
return find_largestKey(root) - find_smallestKey(root)

Complexity is 2logn = O(logn)
(b)
Hints

e For the largest, Note we can step down on left children. Similarly for the smallest,
we can step down on right children.

Solution

False. Counter example from the solution manual.

6.3.9
Hints

e Very similar to binary search tree
Solution

Like the previous previous exercise we traverse left-most and right-most nodes. The
difference is we consider left key and right key of these nodes, respectively.

def range(root)
leftMost = find_leftMostNode (root)
rightMost = find_rightMostNode (root)

return rightMost.rightKey - leftMost.leftKey

6.4.2

Homework.

6.4.5

Students will be given the following subroutines.

input: heap as an array, node by its index
output: None. Given heap is modified in-place
def siftUp(heap, index):

cannot stif-up root node
while index > O:

parent of the node
parentIndex = (index - 1) // 2

parental dominance is satisfied
if heap[index] <= heapl[parentIndex]
break

if not satisfied, swap with parent
swap (heap [index], heap[parentIndex])

set the cursor to the parent, and repeat
index = parentIndex

input: heap as an array, node by its index
output: None. Given heap is modified in-place
def siftDown(heap, index):

Children indices
leftChild_index = (2 * index) + 1
rightChild_index = (2 * index) + 2

Find the largest out of index, leftChild_index, and rightChild_index

Initially set
largest = index

Check if the left child exists. if larger, update largest

if leftChild_index < len(heap) and heap[leftChild_index] > heap[largest]

largest = leftChild_index

Check if the right child exists. if larger, update largest
if rightChild_index < len(heap) and heap[rightChild_index] > heap[largest]:
largest = rightChild_index

If the largest element is one of the children.
if largest != index:

swap the child with parent
swap(heap[index], heap[largest])

recursively heapify the smaller tree
siftDown(heap, largest)

parental dominance is satisfied here, whether recursion is called or not, so we
return

(a). Homework.

Hint. Same logic of b but notably restrict search of the min element on leaves, H[|n/2|+
1],... H[n]. Also since the minimum is in leaves, we will only call siftUp.

def delMin(heap H)
find the minimum node’s index in leaves
minElIndex = min(H[n/2 .. n])

swap the minimum with last node
swapWithLast (minElIndex)

remove the last node
removelLast ()

sift-up the node in the index, previously containing the minimum
siftUp(minElIndex)

(b).
Hints
e Use the element removal subroutine, given in the book. Call it removeLast.
e Use the swap with last indexed node trick, given in the book. Call it swapWithLast.

Solution

def

def

def

findElementIndex(heap, target)
for each element i of heap
if i == target
return i.index

removeIndexNode (heap, index)

swap the indexed node with the last node
swapWithLast (heap, index)

remove the last node
removeLast (heap)

One of them must terminate in constant time
siftDown(heap, index) # swapping downwards
siftUp(heap, index) # swapping upwards

removeElementNode (heap, target)

get the index of target by a linear scan
index = findElementIndex(heap, target)

remove the element at found index
removeIndexNode (heap, index)

It is easy to verify, that one of siftDown and siftUp must terminate in O(1), given
the structure properties of the heap.

Complexity is O(n)+0O(1)+O(1)+O(logn) = O(n), respectively, of findElementIndex
and removeIndexNode.

6.5.1

Homework.

6.5.9

We ask students how to compute the binary representation of a given number n.

def

binaryRepresentation(n)

list storing binary representation
b[i] corresponds to ith digit
binRep = []

by definition we know left-most digit is not O
n becomes 0, only when last digit is computed
while n != 0

fetch right-most digit

b = n mod 2

eliminate right-most digit

n = floor(n/2)

binRep.append(b)

return binRep

Finally we hint to them, algorithm RightToLeftBinaryExponentiation in page 238
can be modified, so that it does not require list b(n) as an input.

6.6.5

Homework.

6.6.6

Homework.

6.6.4

You are given an array of positive integers. Find the maximum element but without
using > operator.

Hints
e Think of a related algorithm that uses < operator
e [s the knowledge of minimum element useful in anyway?
e What if we transformed all elements to their negation?
Solution

def negationOfArray(A[O0..n-1])
for i in 0..n-1

Ali] = -(A[iD)

def minElement (A[O..n-1])
minElement = A[O]

for i in 1..n-1

if A[i] < minElement
minElement = A[i]

return minElement
def maxElementByReduction(A[O..n-1])
transform

negation0fArray(A)

conquer
min = minElement (A)

solve the main problem
return -(min)

	Exercises
	6.1.1
	6.1.2
	6.2.4
	6.2.5
	6.3.5
	6.3.9
	6.4.2
	6.4.5
	6.5.1
	6.5.9
	6.6.5
	6.6.+

