Lab 07

I. El-Shaarawy & M. Touny

December 3, 2023

Contents

Exercises

Exercises

7.1.2

Homework.

7.1.5
We tell students sort by a single loop rather than a single-line.

def sortBySingleLoop(A[0..n-1])
initialize a zeros list of size n
S =1[0] *n

loop on A values, Convert to corresponding index, Set that index
for i in 0..n-1
S[A[il-1 1 = A[i]

S is A but sorted
return S
7.1.10

Homework.

7.2.2

Homework.

7.2.3

Homework.

7.2.11

a

Hints
e The question asks for memory. So any timely inefficient solution is acceptable.
e Use naive brute-force.

Solution

input: strings S[0..n-1] and T[O0..n-1]
output: True if and only if T is right cyclic shift
def bruteForceRightCyclicShift(S[0..n-1], T[0..n-1])

try all ith positions
for i in 0..n-1

counter of matched characters
k=0

check from the ith position to last nth character, cycling if needed
while k < n and S[(i+k) mod n] = T[k]
k=k+1

all n characters are matching, i.e strings are matching
if k == n return True

if no position matches
return False

If the mod operation is troublesome to students, we show

input: position x
output:

x if x did not pass string length n

if x passed n, return only the additional length beyond n
def myPosition(x, n)

if x < n

return x
return x - n

input: strings S[0..n-1] and T[O0..n-1]
output: True if and only if T is a right cyclic shift of S
def bruteForceRightCyclicShift(S[0..n-1], T[0..n-1])

try all ith positions
for i in 0..n-1

counter of matched characters
k=0

check from the ith position to last nth character, cycling if needed
while k < n and S[myPosition(i+k,n)] = T[k]
k=k +1

all n characters are matching, i.e strings are matching
if k == n return True

if no position matches
return False

Observe greatest value of x isn —1+4+n —1=2n — 2 < 2n. So our function myPosition is
equivalent to mod operation in this case.

Complexity. Extra space is O(1). Time is O(n?).

b
Hints
e Use Boyer-Moore algorithm as a subroutine.

e What is the input enhancement so that a linear scan, of all possible positions, of first
character, is feasible?

e Repeat the input so the check is equivalent to cycling.
Solution

input: string S
output: S but with n-1 prefix appended
def appendPrefix(S[0..n-1])

copy S
X=3

for each character of n-1 prefix
for i in 0..n-2

append to the end
X.append(X[i])

return appended string
return X

input: string S[0..n-1] and T[O..n-1]
output: True if and only if T is a cyclic right shift of S
def BoyerMooreRightCyclicShift(S[0..n-1], T[0..n-1])

enhance the input by appending n-1 prefix
S = appendPrefix(S)

right cyclic shift is equivalent to matching T in enhanced input S
return BoyerMoore(S, T)

For enhanced X of given input S, Observe S[i mod n| = X[i]. In other words, our condition
on the enhanced input is equivalent to the brute-force algorithm. Since we know the brute-
force is correct by definition, so is BoyerMooreRightCyclicShift.

Complexity.

e Time. ©(n) for appending prefix. O(n) for Boyer-Moore algorithm (given from the
levitin).

e Space. Extra space is O(n) for appended prefix. O(| > |) for the good-suffiz table. ©(n)
for the bad-symbol table.
7.3.1

Homework.

7.3.2

Homework.

7.3.4

Given the even distribution of hash function, We have a uniform distribution. Fixing cell ¢; the
probability of hashing to it is Pr[R; = ¢;] = % for the ith element out of the n elements. Since
the hash events are pairwise independent, Pr[C = ¢;] = Pr[R; = ¢;A---AR,, = ¢;| = Pr[R; =

¢l .. Pr[R, =¢j| = (%)n Since the events of hashing all elements to a particular cell are

disjoint, Pri{C =cyV---V Cp_1] = PriC =col + -+ Pr[C = cp_1] =m (%)n = mgfl'

	Exercises
	7.1.2
	7.1.5
	7.1.10
	7.2.2
	7.2.3
	7.2.11
	7.3.1
	7.3.2
	7.3.4

