Lab 08

I. El-Shaarawy & M. Touny

December 9, 2023

Contents

Exercises

Exercises

8.1.3

Homework.

8.1.5

Homework.

8.1.6
Hints
e Explain why is the formulation F'(n) = F(n—1)+p; is wrong. Derive a counter example.

e The optimal solution may be F(n) = p,. Modify it so that it is in terms of F(k) for
some k < n.

e Generalize
Solution

Recursive formulation.

F(0)=0
F(n) = ggjagxn{pj + F(n—j)}

Algorithm.

input: Length n, and values of pieces of length i, P[i]
output: Maximum value of all possible cuts on a rod of length n
def dynamicRodCut(n, P[O0..n])

a rod of length zero contributes nothing to revenue
P[0] =0

Initialize an array of size n
F=1[] xn

Set the base case
F[0] =0

Compute bottom-up F[i]
for i in 1..n

maxVal = 0

Compute the maximum among all js

for j in O0..1
call memoized subinstances
update if found a greater value
maxVal = max(maxVal, P[j] + F(n-j))

memoize
F[i] = maxVal

return max value of cuts, on given length n
return F[n]

Complexity. Time is 1 +--- +n =n(n + 1)/2. Additional space is n + 1.

8.2.2

Homework.

8.2.3

Homework.

8.2.5
Hints

o Recall for the algorithm given in the book, at each step, either we take or leave the ith
item.

e For our case what if we at each step, either leave all items, or take 1st item, or take 2nd
item, .., or nth item. Modify the formulation.

Solution

Recursive Formulation.

FW)=0 ifW<w;, 1<j<n

F(W)= max F(W —wj) + v, otherwise
JW2>w;

Algorithm

memory function

input: 1 indicating selecting a multiset of size at most i, from all n items
j capacity

output: optimal value of feasible multiset of size at most i

def MFKnapsack(i, j, weight, value, F)

only if not memoized, compute and cache it
if Fli,jl <0

find the maximum value among all cases

case, no additional item is taken

this value sustains only if there is no capacity for any item
recall values are positive integers

maxVal = MFKnapsack(i-1, j)

for each item out of total n items,

if there is a capacity for it,

compute total value, and update if greater.
for i in 1..n

maxVal = max(maxVal, value[i] + MFKnapsack(i-1, j-weight[i]))

memoize
F[i,j] = maxVal

return F[i,]]

input: weight of ith item, value of ith item, total capacity W
output: max value of a multiset of size at most n,

from all n items, constrained by capacity W

def dynamicKnapsack(weight[1..n], value[l..n], W)

memoization table

all cells -1, indicating no value is computed

F[0..n, 0..W] = -1

except row O and column O, values are O, by definition of base case
for i in 0..n, F[i,0] = 0

for i in 0..W, F[0,i] = 0

compute memoization table F, and read F[n, W]
sol = MFKnapsack(n, W, weight, value, F)

problem solution is F[n, W]
return sol

8.3.4

Homework.

8.3.8
Hints.

e Recall you have table R, where R[i, j| contains the root of the tree of nodes i,...,j.

e Recall how the optimal solution of knapsack was constructed.

Solution.

global variables: table R of roots indices

keys A
input: root node of a tree, and indices i and j of keys covered
output: None. Tree is modified so the root points to its children
initialize with i =1 and j = n
def optimalBST(root, i, j)

H H H

base case
if root = NULL

return
index of the root of subtree of keys A_i, .., A_j
k = R[i,]]

left child
root.left = A[R[i, k-1]]
right child
root.right = A[R[k+1, j]]

Recursively, Call the child
optimalBST(root.left, i, k-1)
optimalBST(root.right, k+1, j)

P.S. Anything by Donald Knuth is worthwhile studying, however for our pragmatic purposes
we omit the analysis bounding O(n?).

	Exercises
	8.1.3
	8.1.5
	8.1.6
	8.2.2
	8.2.3
	8.2.5
	8.3.4
	8.3.8

