Lab 09 - Chapter 9

I. El-Shaarawy & M. Touny

December 16, 2023

Contents

Exercises

Exercises

9.1.1
Hints.

e Use quotient and mod operations.

e Observe why the quotient yields the maximum possible count of some coin.
Solution.

input: non negative amount n, and a decreasing array of coins D
output: array C where C[i] is number of coins of ith denomination D[i]
def greedyCoins(integer n, D[1..m])

for each coin

for i in 1..m

take max possible number of it
C[i]l = floor(n/D[i])

remaining amount for next iteration
n = n \mod D[i]

if there is still a remaining amount
if n != 0 return "no solution"

otherwise given n is partitioned by coins
return C

9.1.15

Homework.

9.2.3
Hints.

e Observe Kruskal works with global edges, unlike Prim which searches within local
neighbour edges.

e What is error you think we will encounter upon running Kruskal on a a tree with more
than one component?

e Why does looping on |V| — 1 works in Kruskal?
e Modify the while condition to accommodate any forest.
Solution.

Modify the while condition in Kruskal to be ecounter < |E|, So it terminates if there are
no more edges.

Bonus. Modify Prim then use it as a subroutine to solve the general forest case.

9.2.5

Homework.

9.3.1
Hints.

(c) Use Transform-and-conquer strategy.

(c) Fixing vertices, What kind of modification is required on edges?

(d) Use Transform-and-conquer strategy.

(d) We will use Dijkstra as a subroutine, So the graph will be transformed to the usual
form given in the book.

Solution.

()

A data structure which considers directed edges.

(b)

Same algorithm. You may terminate once you find the destination.

(d)

Each vertex v; is mapped to v§' and v¢", with directed edge (vi’,v¢") whose weight is the
number labeled on v;. Any vertex in G neighbour to v;, can travel to vi* but not v¢" in G'.
Only vertices vf™ but not v$* can travel to other vertices. Those edges in G’ are assigned zero

weights.

input: graph G with weighted vertices
output: graph G with weighted edges and no weighted vertices
def vertexWeightToEdgeWeight (G)

construct empty graph G’

for each vertex v in G(V)
add vertex v_st to G’
add vertex v_en to G’
set (v_st, v_en).weight to v.weight
add edge (v_st, v_en) to G’

for each edge e = {a,b} in G(E)
set (a_en, b_st).weight = 0
add edge (a_en, b_st) to G’
set (b_en, a_st).weight = 0

add edge (b_en, a_st) to G’

return G’

(c)

Set the destination as source then reverse paths. If graph is directed reverse paths before
running the algorithm also.

input: graph G
output: same graph but whose edges are reversed
def reverseEdges(G)

construct empty graph G’

clone vertices G’ (V) = G(V)

for every vertex v in G(V)
for every edge e = (v,t) in G(E)
add edge (t,v) to G’

return G’

input: undirected graph G, destination d

output: shortest-paths of given d

def undirectedGraphSingleDistination(G, d)
compute Dijkstra(G, d) in graph G
return reverseEdges(G)

input: directed graph G, destination d

output: shortest-paths of given d

def directedGraphSingleDestination(G, d)
G = reverseEdges(G)
compute Dijkstra(G, d) in graph G
return reverseEdges(G)

Homework.

A data-structure based implementation is left to students. In fact this is an excellent illustration
of abstraction in algorithm design.

9.3.7

Homework.

9.4.5

Homework.

9.4.7
Hints.

e A basic recursive algorithm traversal works.
Solution.

def allHuffmanCodes(root)
if root is NULL
return []

if root is a leaf
if root.rightChild is NULL and root.leftChild is NULL
return [root.character]

if exactly one child is NULL, Concatenating an empty list does no harm
childCodes = allHuffmanCodes(root.leftChild) + allHuffmanCodes(root.rightChild)

prefix each code in child with root’s character
return [root.character + code for code in childCodes]

We leave it to students to modify the algorithm so that it generates a 2d-array of symbols-
codes as a homework.

	Exercises
	9.1.1
	9.1.15
	9.2.3
	9.2.5
	9.3.1
	9.3.7
	9.4.5
	9.4.7

