Problem-set 01

Mostafa Touny

Contents

Lectures: Sipser 1: Ch. 0.2. 2: Ch. 3.1, 3.3.

As the recipe is deterministic, i.e generates only one output given the same input,
The assignment is valid and the function is well-defined.

For injectivity, we prove the contrapositive; Namely, if g # 1 — f(x0) # f(21).
Since, xg + 1 # x1 + 1, Their binary representation differs in either the number
of bits or in some bit not matching. That unmatching bit cannot be the most
significant bit as it’s always 1. Therefore, resulting strings, f(zo) and f(z1) are
not the same.

For surjectivity, Pick-up any string w € {0,1}* and reverse the recipe to obtain
natural number z. Namely, add 1 as the most significant bit, interpret string as
a binary number, convert to base 10, and finally subtract 1. Clearly f(x) = w.

b

Here’s a very illustrative example that achieves an encoding in lga + 1gb.

(2, 5), converted to binary, (10, 101); add leading zeros so both have the same
number of bits, (010, 101). Finally, Concatenate bit by bit, i.e add the first bit
of the first number then first bit of the second then second bit of the first, ..etc,
Yielding 011001.

The recipe can easily be rolled back.

Ex. 3

a

Binary search on range (a, a+1, .., b-1, b), where at each step algorithm D is
queries on both the first and second halves of the array, Then recursively call
the binary search on both halves.

primeFactor(X = array(a, at+l, .., b-1, b))
if X.length ==

if D(x)
return X[0]

return FALSE

if X.length == 0
return FALSE

halfIndex = floor(X.length/2)
firstHalf = X[: halfIndex]
secondHalf = X[halfIndex+1 :]

if D(firstHalf)

return primeFactor(firstHalf)
if D(secondHalf)

return primeFactor(secondHalf)
return FALSE

main(X = array (a, a+l, .., b-1, b))
res = primeFactor (X)
if res == FALSE
print 'no'
else
print 'yes'

Since m > length of X, Complexity is O(lgm).

b

Solving decision $D by f. Compute f(z) =y and check whether y; = b.

y = £(x)

if y[il ==
return YES

return FALSE

Computing f by $D. on each bit z; of =, Call D on string x, bit 0, and position
i. if result is YES, let $y_i = 0; if result is NO, let y; = 1. assign f(z) to y.

y = [1

for i in x.length

res = D(x, 0, i)
if res == YES

yl[il =0
else
ylil =1
return y

Ex. 4

a

Trivially we can transform the input to the form *input#.
Initially the machine is on state qq.

Qo : move right until # is reached, then ¢;.

q1 : move left until a non-# is reached, then g¢o.

g : if * halt; if O print # and gs; if 1 print $ and g4.

g3 : move right until a blank space is reached, then print 0 and gs.
q4 : move right until a blank space is reached, then print 1 and ¢s.

¢5 : move left until # is reached, then ¢;.

b
skipped

C
Assume andrew id is ac12. f(acl12) = 10000110.

*10000110# is our assumed input. on step 8, machine is on 0 and state ¢p. On
step 9, machine is on # and state gg. On step 10, machine is on state ¢;

	Ex. 1
	Ex. 2
	a
	b

	Ex. 3
	a
	b

	Ex. 4
	a
	b
	c

