
Problem-set 02

Mostafa Touny

Contents
Ex. 1 . 2
Ex. 2 . 2

a . 2
b . 3

Ex. 3 . 3
a . 3
b . 3
c . 3
d . 3
e . 4

Ex. 4 . 4

1

Lectures: Sipser 3: Ch. 3.2, 7.1 (ignore nondeterminism). 4: Ch. 7.2 (up to
“examples of problems in P”), 4.2 (ignore “Turing unrecognizability”).

Ex. 1
The set of all unary languages is uncountably infinite but the set of all Turing
machines is countably infinite, Hence some unary language isn’t recognizable by
any turing machine.

Let’s prove uncountability of unary languages. Observe the set Σ∗ equals

ϵ s1

1 s2

11 s3

111 s4

.. ..

Any unary language is a subset of Σ∗, and can be re-interpreted as an infinite
binary sequence, where string si is in the language if and only if sequence bit
bi is 1. Clearly, there is bijective map from unary languages to infinite binary
sequences. But the set of infinite binary sequences is uncountably infinite.

Ex. 2
a

Assume the input is conveniently given as w#, and machine’s tape-1 is on first
character of w (or on # if w is ϵ). Assume also tape-2 is given with character
at its beginning, and tape-2 head is one-step right to it. For brevity we ignore
such implementation details.

Initial state is qrightDouble1. We assume characters of the alphabet have corre-
sponding other marked characters. e.g 1 has 1’. We indicate by saying marking
a character, replacing it with its corresponding marked one.

qleftUntill* : move tape-1 left untill * is read, Then move right and qrightDouble1.

qrightDouble1 : sequentially, move tape-1 right once, write 1 in tape-2 twice in two
sequential slots, untill # is read by tape-1 then move left and qisAllMarked.

qisAllMarked : if a marked character or * is read by tape-1, then qunmarkInput. if a
non-marked character is read, then qleftUntill*.

qunmarkInput : move tape-1 left replacing marked characters by their unmarked
counterparts untill * is read, then move right and qlefttape2.

qlefttape2 : move tape-2 left untill * is read, then move right.

2

It is easy to transform tape-1 to be exactly w and tape-2 to be popped out of *
at its left-most. We ignore these implementation details.

b

From a, We know there’s a 2-tape turing machine T that can prepare tape-2
with string 12|w|2 . We wish to think of this string as a counter of number of steps
taken by the machine. It is possible for it to be augmented, to simulate machine
M , while ticking tape-2, Accepting if M accepts and tape-2 isn’t completely
ticked, and rejecting otherwise. The 1-tape turing machine M can be constructed
by simulating T .

T runs in polynomial time, since preparing tape-2 is upperbounded by n2, and
ticking tape-2 while simulating M doesn’t cost any more steps. The simulation
of T by M ′ is polynomially overheaded by T , and hence M ′ is polynomially
upperbounded.

Ex. 3
a

Let T be the turing machine recognizing L. It is possible to construct another
turing machine T ′ whose accept and reject states are swapped. So, w ∈ L iff T
accepts w iff T ′ rejects w iff w ̸∈ Lc.

The number of steps made by T ′ is exactly the same as T , and hence of a
polynomial complexity.

b

Let T1 and T2 be two turing machines recognizing L1 and L2 respectively. It is
possible to construct a new turing machine T that simulates T1 and memorizes
its result, Then instead of termination, simulates T2 on the same input and
memorizes its result also. It is easy for T to be designed such that it accepts
input w if and only if either the simulation of T1 or T1 accepted.

The complexity of T is O(poly(n)) + O(poly(n)) + C = O(poly(n))

c

Similarly to b, but T accepts input w if and only if both the simulations of T1
and T2 are accepted.

d

Similarly to b, but T accepts input w if and only if at least two out of the three
simulations of T1, T2, and T3 accepts.

3

e

Let T be the turing machine recognizing L. For any m ∈ N , It is possible
to construct a m-tape turing machine Tm, that simulates T on wi on the ith
tape. Hence, complexity of Tm is

∑m
i=0 O(poly(|wi|)) = O(poly(|w|)). Clearly

the processing required to copy substrings wi on ith tapes is polynomial also,
Hence Tm’s established upperbound remains the same.

Ex. 4
Any turing machine needs at least a linear scan of cost n, to behave in number of
steps, as a function of n. In other words, number of steps T , must be T (n) ≥ n,
so that T = f(n) for some function f . Since T is upperbounded by

√
n = ≀(n),

T (n) ̸= f(n) for any f . In other words, T isn’t based on input size n. Therefore,
must be a constant.

The intuition is very strong that a turing machine cannot behave in relation to n
if its memory doesn’t contain n’s value; I am not aware of a more rigorous proof.

As final note, For any constant C, we can always find some n, such that C
√

n < n.
Hence, always guaranteeing the turing machine can’t read its whole input.

4

	Ex. 1
	Ex. 2
	a
	b

	Ex. 3
	a
	b
	c
	d
	e

	Ex. 4

