
Problem-set 03

Mostafa Touny

Contents
Ex. 1 . 2
Ex. 2 . 2
Ex. 3 . 2
Ex. 4 . 3

a . 3
b . 3
c . 3
d . 3

1

lectures 5, 6, 7 sipser 9.1, 7.2

Ex. 1
The proof is already mentioned in sipser. We can easily reprove it using the
diagonalization argument.

Ex. 2
Enumerate all the two choices of a node colored in (red or blue), or colored
in yellow, on all nodes. Consider the two subgraphs separately; If the yellow
subgraph contains any edge reject the instance. Check if the other subgraph is
2-colorable. Only if yes, accept as the whole graph as 3-colorable.

The complexity is justified, Since checking 2-colorable is polynomially solved, on
each instance of all two choices, on all nodes.

Clearly, If the graph is 3-colorable, then the algorithm catches the instance
corresponding to nodes correctly colored in yellow and others in either red or
blue. On the other hand, If the algorithm found a solution, Then the graph is
3-colorable, As the solution can easily be constructed.

Ex. 3
Observe the cases of xi and xj of the binary relation xi ≤ xj .

• (1) Both are assigned by a given condition

• (2) One is assigned 0 and the other is equal or less

• (2) One is assigned 1 and the other is equal or greater

• (3) Both are not assigned

• (4) One is assigned 0 and the other is equal or greater

• (4) One is assigned 1 and the other is equal or less

We give an algorithm that costs exactly one linear scan. Scan all binary relations
xi ≤ xj , If

• of type (1), Check whether assigned values conform to the relation, and
reject satisfiability if not.

• of type (2), Assign 0 and 1, Correspondingly, So that values conform to
the relation. If a conflict is faced, where there’s a prior assignment, that
precludes from assigning what satisfies the relation, reject.

To see why the algorithm is correct, We construct a valid solution, Given what
the algorithm had already verified. For case - (3), assign xi = 0 and xj arbitrarily
0 or 1 - (4), assign arbitrarily 0 or 1

2

Clearly, cases 3 and 4, do not conflict with cases 1 or 2, Since the algorithm
has already checked and assigned what satisfies cases 1 and 2. Case 3 doesn’t
conflict with 4, As 4 allows any assignment. Remaining xi with no conditions at
all, can be arbitrarily assigned as well.

Ex. 4
From hw02-2-b, We are given a procedure haltMachine(T, f(n)) that produces a
Turing Machine Tf(n), which is exactly the same as machine T , but halts within
f(n) steps; If T terminates within f(n), Then Tf(n) produces the same output;
Otherwise rejects. Note Tf(n) is multi-tab, whereby at each step simulated of T ,
a counter on a specific tab is increased by one.

a

For any polynomial time machine T , We know it runs in time at most knk. Tknk

simulates T upto knk steps which suffices to ensure it produces the same output.

b

Since T is polynomial, and at each step, counter increase is polynomial, The
total resulting complexity is polynomial.

c

Observe to construct Tf(n), We would need to integrate a sub-routine that
increases counter by one, where every state points to it after completing its
one-step operation. For every state qi, we create a new state qi−counter such
that - qi transitions to qi−counter, instead of qr as in T , exactly after one-step.
- qi−counter transitions to qr, what qi transitions to in T , after completing all
steps required for increasing counter by one.

Clearly the transformation is linear in time.

d

Alice can basically check for the sub-routine that increases counter by one, and
check for the state that terminates the machine, upon the counter reaching f(n).

The algorithm of checking polynomiality is clear, if the reader is convinced by
the procedure of transformation.

3

	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4
	a
	b
	c
	d

