
Problem-set 04

Mostafa Touny

Contents
Ex. 1 . 2

a . 2
b . 2

Ex. 2 . 2
Ex. 3 . 2

a . 2
b . 3

Ex. 4 . 3
a . 3
b . 3
c . 3
d . 4

1

lectures 8, 9 (skimmed) Sipser Ch. 1.2; and, 3.2, 3.3 on nondeterminism. Sipser
first half of Ch. 7.4 (and also Ch. 5.3 if it helps).

Ex. 1
a

Obviously the problem has a polynomial-time verifier by specifying the range
of the subsequence common among all wi. It’s easy to loop on that range k,
Checking whether corresponding positions of all wj are the same.

b

Obviously a verifier is some input x0 such that C1(x0) ̸= C2(x0). It’s easy to
compute both circuits and check their unequal output.

Ex. 2
Intuitively, If a problem has some varifier, Then we can brute-force all possible
verifiers. Observe we can choose the greatest branching factor cmax so that
time is upper-bounded by c

poly(n)
max . Alternatively, Our argument might be seen

through the perspective of a tree of an NP problem, where poly(n) is the time
required of the longest path of the tree.

I am not aware of any more rigorous proof.

Ex. 3
a

For clarity and brevity we list all cases:

• unit clause xi

– delete any clause containing xi

– delete ¬xi from any clase
• unit clause ¬xi

– delete any clause containing ¬xi

– delete xi from any clause

Due to symmetry we mention only the case of unit clause xi.

We prove the new propagated C ′ is satisfiable if and only if the given C is
satisfiable.

(←) Necessarily xi = True. Hence any clause containing xi is immediately
evaluated to True as well. Since ¬xi = False one of the remaining units of the
clause containing ¬xi must be evaluated to True.

(→) Following the same reasoning, Since xi = True, adding any clause containig
xi is still going to be true regardless of other units boolean values. Also adding

2

¬xi = False to any clause evaluated to True won’t change the whole clause’s
boolean value.

b

We give a constructive polynomial-time algorithm. We follow the hint mentioned
in the problem statement.

For case (ii), Loop on clauses, and for each:

• If no negative literal is assigned any value, Conveniently pick-up the first
negative literal ¬xk and assign xk = False.

• If a negative literal ¬xk is assigned xk = False, Continue to the next
clause.

Observe we only assign xk = False. As a result, the case of a negative literal
¬xk assigned xk = True won’t ever be encountered.

For case (i), Keep applying the process of a, Until all unit-clauses are eliminated.
If any clause is empty, It’s concluded the given C is unsatisfiable. Now we know
every clause contains at least two literals, Including a negative literal. Case (i)
is now reduced to case (ii).

Ex. 4
a

Clearly, If literals xi which are assigned to 1 are even, Then they can re-arranged
as pairs, Each yielding 0, and in turn all pairs yield 0. Observe for an even
number, 2k mod 2 = 0.

Similarly, if literals xi which are assigned to 1 are odd, Then we obtain 1 XOR
0 = 1, by separating one literal from the remaining even literals.

b

We define summation as, ϵ1 + ϵ2 = c1 + c2 + 1 where are
∑

i x1i = c1 mod 2 and∑
i x2i = c2 mod 2. Note if c1 = c2 = 1, Then c1 + c2 + 1 = 1 + 1 + 1 = 1 mod 2

and hence (ϵ1 + ϵ2)(x) = 1. On the other hand, If 1 + c2 + 1 = 1 mod 2, Then
c2 = −1 = 1 mod 2. Hence, ϵ2(x) = 1.

c

Consider k1 to be the number of equations in which x11 appreas.

Update x11 to
{

0, if k1 is even
k1x11, if k1 is odd

}
(1)

Remark in case k1 = 2m is even, Then
∑2m

j=1 x1j = 2(mx11) = 0 mod 2. That,
Regardless of x1j values, as we would always obtain an even number.

3

Now consider the whole system of equations by summing all equations as we
defined in b. In case k1 is even, Then we know x1j evaluates to zero, and hence
their removal from the system doesn’t affect. In case k1 is odd, Then k1x11
is exactly equivalent to x11 + x12 + · · · + x1n. Think of redistributing x1j to
reconstruct the original equations before the transformation, which clarifies why
the new system is equivalent to the original one.

d

If at any stage 0 = 1 is concluded, Then no matter what x is inputted, The
system won’t be satisfied. Since the transformed system is equivalent to the
original one, It’s trivial why the original system is unsatisfiable.

Observe in modulus 2, the only possible evaluation outcomes are 0 or 1. So if
LHS ̸= RHS, then necessarily we get 0 = 1. If we don’t get 0 = 1, then all
equations’ evaluations are satisfied.

Observe also if kiixii = c mod 2 then by our definitions we know kii is odd. It
follows there’s exactly one unique solution for xii.

As the instructor hinted, back-substitution can be applied recursively to compute
xnn, xn−1 n−1, .., x11 where once xii is computed, For all the above equations,
Their number of variables are reduced by one. Only one literal xi−1 i−1 is left
for the next equation.

As a valid assignment x for the transformed system is constructed, The original
system is satisfied by x also.

4

	Ex. 1
	a
	b

	Ex. 2
	Ex. 3
	a
	b

	Ex. 4
	a
	b
	c
	d

