
Problem-Set 06

Mostafa Touny

October 13, 2022

Contents

Ex. 1 . 2
Ex. 2 . 3
Ex. 3 . 4
Ex. 4 . 4

1

Lectures: Sipser
11: Ch. 9.3 and rest of Ch. 7.4.
12: Ch. 7.5.

Ex. 1

Here is a very illustrative example.

The procedure of encoding 3COL-UNARY to 3COL is as:

• (i) For each group of nodes labeled with some colour x, create two additional
connected nodes x1 and x2, and connect each node coloured x to both of them.

• (ii) For each two distinct groups of colours x and y, connect some node from x
with some node from y.

When encoded input is run on 3COL,

• Procedure (i) ensures all nodes coloured x will have the same colour, even if that
colour is not exactly x.

• Procedure (ii) ensures groups of labeled nodes will have different colours.

Notably the colours outputted by 3COL may not match the given original labeled
colours. Since colours are symmetric, i.e can be exchanged without tampering any
required condition, an encoded graph f(w) is accepted by 3COL if and only if graph w
is accepted by 3COL-UNARY.

2

Ex. 2

The goal is to show any language in NP can be polynomially reduced to IMPLICIT-
4COL. The exponentiality of number of vertices of graph GC is the central key of
testing all possible certificates and in turn determining whether a given w belongs to L
language.

By cook-levin we know any NP language can be encoded in terms of SAT, and hence
we can construct a corresponding circuit. Since the circuit’s input is of length 2n, we
can think of it as partitioned into two n-length inputs. The first one is problem’s input
(like a graph) and the second is a potential certificate (like a graph-route). The circuit
evaluates whether a given input along some literals assignments (cirtificate) yields true
(satisfiable).

We assume any language input is prefixed with 0, and any certificate input is prefixed
with 1. If the circuit is given an invalid encoding it immediately outputs FALSE. In
other words, If a circuit accepts some input pair, we are ensured the first one indicates
a language input and the second indicates a possible certificate.

Now we can think of graph GC as being partitioned into two groups; One for language
inputs and the other for all possible certificates. If a vertix prefixed with 0 is connected
to a vertix prefixed with 1, we can immediately conclude the language input is satisfiable,
and otherwise it is unsatisfiable.

Given any language L we can construct a corresponding C, and by IMPLICIT-4COL
a corresponding GC . For any input w which we wish to check whether it belongs to L,
We can see whether its encoded vertex in GC is connected to any other vertex.

Ex. 3

Notation. 1

• NAE-Constraint: Ni = (x1, x2, x3)

• XOR(xi, xj) = (xi ∨ xj) ∧ (¬xi ∨ ¬xj)

• GXOR(xi, xj, xk) = XOR(xi, xj) ∧XOR(xi, xk) ∧XOR(xj, xk)

Recall an XOR means exactly one of two literals is true

Lemma. 2 GXOR is unsatisfiable.
Observe each two XORs intersect a literal xi. So either:

• xi is False, and xj and xk are both True. Or

• xi is True, and xj and xk are both False

But that contradicts the third XOR stipulating exactly one of xj and xk is True.

3

Lemma. 3 5 clauses of GXOR are satisfiable.
Following the same line of reasoning of the previous lemma, It’s clear by ignoring some
clause of the 6 clauses of GXOR, we can have xj and xk both assigned to the same
boolean value.

Lemma. 4 Equivalence of NAE constraint and 5 clauses of GXOR.
It is clear from the previous discussion that satisfying any 5 clauses of GXOR is
equivalent to satisfying an NAE constraint. Clearly, Not-All-Equal constraint is exactly
the same as either two literals are True and one is False, or two literals are False and
one is True.

Theorem. 5 An NAE-3SAT: N1, N2, . . . , Nr is equivalent to corresponding MAX-
2SAT: GXOR1, GXOR2, . . . , GXORr with at least 5r clauses to be satisfied.

If MAX-2SAT is going to satisfy exactly 5 clauses of each GXORi, Then we are
guaranteed of satisfying all Ni. In fact, This is the only feasible distribution of satisfied
clauses. Otherwise all 6 clauses of some GXORi must be satisfied, contradicting Lemma
2.

On the other hand, It’s clear if a given NAE-3SAT instance is satisfiable, then so is the
corresponding MAX-2SAT.

Ex. 4

”not confident of the solution”

a

As mentioned by the instructor we follow the verifier-based definition of NP. Our goal
is to show

< M,x, 1w, 1t >∈ TS ↔ ∃u s.t S(< M,x, 1w, 1t >, u) certifies < M,x, 1w, 1t >∈ TS

By S we mean an algorithm which simulates M on (x, u), untill it accepts on t steps.

The definition trivially concludes our intended goal. Note if < M,x, 1w, 1t > ̸∈ TS
then obviously there’s no any certificate u, such that any M computes (x, u) in time
bounded by t.

b

Let L denote any language in NP . If x0 ∈ L, Then we know there’s some turing
machine M0 which verifies x0 by some certificate u0 in time t0 = poly(n). Clearly it’s
possible to construct some < M0, x0, 1

w0 , 1t0 >∈ TS. if x0 ̸∈ L, then there’s no any
verifier u.

4

	Ex. 1
	Ex. 2
	Ex. 3
	Ex. 4

