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Ex. 2.60

67. A median of a triangle is a segment joining a vertex to the mid-
point of the opposite side. Referring to Figure 20(A), prove that three
medians of triangle ABC intersect at the terminal point P of the vec-
tor %(_u + v+ w). The point P is the centroid of the triangle. Hint:

Show, by parametrizing the segment AA’, that P lies two-thirds of the

way from A to A’. It will follow similarly that P lies on the other two
medians.
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Ex. 2.66

66. Show that the line in the plane through (xq, yg) of slope m has
symmetric equations

y—Y
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Be definition of a slope, We have two points on the line: (zg,y0) and (zo + 1,40 + m).
By page 640, We take the directional vector: v = (xg + 1,30 + m) — (zo,%0) = (1,m).
Thus,
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Hence, The symmetric form is satisfied.



Ex. 2.67

60. Let £ be the line through Py = (xq, yp, zg) with direction vector
v = (a, b, ¢). Show that L is defined by the symmetric equations (10).
Hint: Use the vector parametrization to show that every point on £
satisfies (10).
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Taking 2/3 of it: %(0?4’ — OA) = %w + % — %v.

P is the terminal of vector: v + %w + %;u — %v = %w + %u + %;v.

Symmetrically, Taking % of segments BB’ and C'C’ yields the vector %w + %u + %v,

and thus point P lies on the other two medians as well.
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