Ch.12, Sec.3 - Rogawski & Adams' Calculus

Mostafa Touny

October 6, 2023

Contents

Ex.	90	2
Ex.	91	3
Ex.	92	3
Ex.	93	4
Ex.	94	4
Ex.	95	5

Ex. 3.90

90. Prove the Law of Cosines, $c^2 = a^2 + b^2 - 2ab \cos \theta$, by referring to Figure 23. Hint: Consider the right triangle $\triangle PQR$.

R $a \sin \theta$ $b - a \cos \theta$ FIGURE 23

$$c^{2} = (a \sin \theta)^{2} + (b - a \cos \theta)^{2}$$

$$= a^{2} \sin^{2} \theta + b^{2} + a^{2} \cos^{2} \theta - 2ab \cos \theta$$

$$= a^{2} (\sin^{2} \theta + \cos^{2} \theta) + b^{2} - 2ab \cos \theta$$

$$= a^{2} + b^{2} - 2ab \cos \theta$$

Ex. 3.91

91. In this exercise, we prove the Cauchy–Schwarz inequality: If ${\bf v}$ and ${\bf w}$ are any two vectors, then

$$|\mathbf{v}\cdot\mathbf{w}| \le \|\mathbf{v}\| \|\mathbf{w}\|$$

- (a) Let $f(x) = \|x\mathbf{v} + \mathbf{w}\|^2$ for x a scalar. Show that $f(x) = ax^2 + bx + c$, where $a = \|\mathbf{v}\|^2$, $b = 2\mathbf{v} \cdot \mathbf{w}$, and $c = \|\mathbf{w}\|^2$.
- **(b)** Conclude that $b^2 4ac \le 0$. *Hint*: Observe that $f(x) \ge 0$ for all x.
- (a). The goal is $||xv + w||^2 = ||v||^2 x^2 (2v \cdot w) x + ||w||^2$. Then

$$L.H.S = (xv + w) \cdot (xv + w)$$

$$= xv \cdot xv + 2xv \cdot w + w \cdot w$$

$$= x^{2}(v \cdot v) + (2v \cdot w)x + ||w||^{2}$$

$$= ||v||^{2}x^{2} + (2v \cdot w)x + ||w||^{2}$$

$$= R.H.S$$

(b). We know $f(x) = ax^2 + bx + c \ge 0$. Geometrically a parabola which does not intersect the x-axis at two points. So there are no two distinct real solutions, and hence the discriminent $b^2 - 4ac \le 0$

Ex. 3.92

92. Use (6) to prove the Triangle Inequality:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$

Hint: First use the Triangle Inequality for numbers to prove

$$|(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w})| \le |(\mathbf{v} + \mathbf{w}) \cdot \mathbf{v}| + |(\mathbf{v} + \mathbf{w}) \cdot \mathbf{w}|$$

Observe $(v+w) \cdot (v+w) = (v+w) \cdot v + (v+w) \cdot w$, So hint is proven.

$$L.H.S = ||v + w||^2 \le ||v + w|| ||v|| + ||v + w|| ||w||$$
$$= ||v + w||(||v|| + ||w||)$$

Thus, $||v + w|| \le ||v|| + ||w||$

Ex. 3.93

93. This exercise gives another proof of the relation between the dot product and the angle θ between two vectors $\mathbf{v} = \langle a_1, b_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2 \rangle$ in the plane. Observe that $\mathbf{v} = \|\mathbf{v}\| \langle \cos \theta_1, \sin \theta_1 \rangle$ and $\mathbf{w} = \|\mathbf{w}\| \langle \cos \theta_2, \sin \theta_2 \rangle$, with θ_1 and θ_2 as in Figure 24. Then use the addition formula for the cosine to show that

Recall the cosine additition formula is $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

$$\begin{aligned} v \cdot w \\ &= ||v||(\cos \theta_1, \sin \theta_1) \cdot ||w||(\cos \theta_2, \sin \theta_2) \\ &= ||v|| \cdot ||w|| \left[(\cos \theta_1, \sin \theta_1) \cdot (\cos \theta_2, \sin \theta_2) \right] \\ &= ||v|| \cdot ||w|| \left[\cos \theta_2 \cos \theta_1 + \sin \theta_2 \sin \theta_1 \right] \\ &= ||v|| \cdot ||w|| \cos(\theta_2 - \theta_1) \\ &= ||v|| \cdot ||w|| \cos(\theta) \quad \text{given } \theta = \theta_2 - \theta_1 \end{aligned}$$

Ex. 3.94

94. Let
$$\mathbf{v} = \langle x, y \rangle$$
 and $\mathbf{v}_{\theta} = \langle x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta \rangle$ Prove that the angle between \mathbf{v} and \mathbf{v}_{θ} is θ .

It suffices to show
$$\cos \theta = \frac{V \cdot V_{\theta}}{||V|| \, ||V_{\theta}||}$$
. But $||V|| = ||V_{\theta}||$, Then
$$R.H.S = \frac{(x^2 \cos \theta + xy \sin \theta) + (-xy \sin \theta + y^2 \cos \theta)}{||V||^2}$$
$$= \frac{\cos \theta (x^2 + y^2)}{||V||^2}$$
$$= \frac{\cos \theta \, ||V||^2}{||V||^2}$$
$$= L.H.S$$

Ex. 3.95

95. Let **v** be a nonzero vector. The angles α , β , γ between **v** and the unit vectors **i**, **j**, **k** are called the direction angles of **v** (Figure 25). The cosines of these angles are called the **direction cosines** of **v**. Prove that

Let V_x , V_y , V_z be projected vectors of V on x, y, and z axis. Then:

$$\cos \alpha = ||V_x||/||V||$$

$$\cos \beta = ||V_y||/||V||$$

$$\cos \gamma = ||V_z||/||V||$$

It follows

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma$$

$$= (||V_{x}||/||V||)^{2} + (||V_{y}||/||V||)^{2} + (||V_{z}||/||V||)^{2}$$

$$= \frac{||V_{x}||^{2} + ||V_{y}||^{2} + ||V_{z}||^{2}}{||V||^{2}}$$

$$= \frac{||V_{x,y}||^{2} + ||V_{z}||^{2}}{||V||^{2}}$$

$$= \frac{||V||^{2}}{||V||^{2}}$$
(Pythagorean Theorem)
$$= \frac{||V||^{2}}{||V||^{2}}$$

$$= 1$$