9.29

Chapter 01

Mostafa Touny

September 9, 2023

Contents

Prob	le	er	ns	3																						5
2																										. 2
3																			i	į.		Ċ	•	•	•	. 2
																										3
																										3
																										3
																										3

Problems

2

	R_0	R_{120}	R_{240}	D	D'	D''
R_0	R_0	R_{120}	R_{240}	D	Q',	D'3 1
R_{120}	R_{120}	R_{240}	R_0	D''	D	B
R_{240}	R_{240}	R_0	R_{120}	D'	D''	D
D	D	D'	D''	R_0	R_{120}	R_{240}
D'	D'	Ď"	Ď	R_{240}	R_0	R_{120}
D''	D''	R_0	D'	R_{120}	R_{240}	R_0
		D	١			

Two pictures.

Not abelian. Why?

- 3
- a. V.
- b. R₂₇₀.
- c. R_0 .
- d. R_0 , R_{180} , H, V, D, D'.
- e. None.

25)

5

We follow our intuition and generalize the cases of D_4 and D_3 with no formal argumentation.

For both cases, Elements include rotations $\frac{i}{n}$ 360 for $i = 1, 2, \dots, n-1$. Counts n.

Even case only. Flips about the *ith* diagonal (counts n/2), and Flips about the *ith* axis (counts n/2)

Odd case only. Flips about the *ith* diagonal (counts n).

 D_n is going to have a total of 2n elements; This fact was mentioned in the textbook though.

11

Notation. We donate Rotation by T and Reflection by F.

Lemma. Through Caylay table in page 33, TT = T, FF = T, TF = F, and FT = F. In other words $X^2 = T$, and XY = F if $X \neq Y$. They are not both a containing of the second sec

Theorem. Observe we can re-structure the given composed function as $a^2b^2b^2acc^2c^2a^2ac = TTTacTTTac = (TTTac)^2 = T$.

Therefore, Regardless of the choices of a, b, c, The given function is always a rotation.

13

$$D = HR_{90} = R_{90}V.$$

 $X \neq H, V, D, D', R_0, R_{180}$, As otherwise $X^2 = R_0$ and then $Y = R_{90}$. For either of the remaining two cases $X = R_{90}$ or $X = R_{270}$, Necessarily $Y = R_{270}$.