9.29 ## Chapter 01 Mostafa Touny September 9, 2023 ## Contents | Prob | le | er | ns | 3 | 5 | |------|----|----|----|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|----|--|---|---|---|---|-----| | 2 | . 2 | | 3 | | | | | | | | | | | | | | | | | | | i | į. | | Ċ | • | • | • | . 2 | 3 | 3 | 3 | 3 | ## Problems 2 | | R_0 | R_{120} | R_{240} | D | D' | D'' | |-----------|-----------|-----------|-----------|-----------|-----------|-----------| | R_0 | R_0 | R_{120} | R_{240} | D | Q', | D'3 1 | | R_{120} | R_{120} | R_{240} | R_0 | D'' | D | B | | R_{240} | R_{240} | R_0 | R_{120} | D' | D'' | D | | D | D | D' | D'' | R_0 | R_{120} | R_{240} | | D' | D' | Ď" | Ď | R_{240} | R_0 | R_{120} | | D'' | D'' | R_0 | D' | R_{120} | R_{240} | R_0 | | | | D | ١ | | | | Two pictures. Not abelian. Why? - 3 - a. V. - b. R₂₇₀. - c. R_0 . - d. R_0 , R_{180} , H, V, D, D'. - e. None. 25) #### 5 We follow our intuition and generalize the cases of D_4 and D_3 with no formal argumentation. For both cases, Elements include rotations $\frac{i}{n}$ 360 for $i = 1, 2, \dots, n-1$. Counts n. Even case only. Flips about the *ith* diagonal (counts n/2), and Flips about the *ith* axis (counts n/2) Odd case only. Flips about the *ith* diagonal (counts n). D_n is going to have a total of 2n elements; This fact was mentioned in the textbook though. #### 11 Notation. We donate Rotation by T and Reflection by F. Lemma. Through Caylay table in page 33, TT = T, FF = T, TF = F, and FT = F. In other words $X^2 = T$, and XY = F if $X \neq Y$. They are not both a containing of the second sec Theorem. Observe we can re-structure the given composed function as $a^2b^2b^2acc^2c^2a^2ac = TTTacTTTac = (TTTac)^2 = T$. Therefore, Regardless of the choices of a, b, c, The given function is always a rotation. ### 13 $$D = HR_{90} = R_{90}V.$$ $X \neq H, V, D, D', R_0, R_{180}$, As otherwise $X^2 = R_0$ and then $Y = R_{90}$. For either of the remaining two cases $X = R_{90}$ or $X = R_{270}$, Necessarily $Y = R_{270}$.