Chapter 01 ### Mostafa Touny # September 9, 2023 # Contents | Prob | le | en | \mathbf{ns} | 2 | |------|----|----|---------------|---|---|--|---|---|--|---|--|--|---|---|--|--|--|--|---|--|--|--|---|--|--|---|---| | 2 | 2 | | 3 | 2 | | 5 | 11 | L | 13 | 3 | • | | 21 | | | | _ | _ | | _ | _ | | _ | | | _ | _ | | | | | _ | | | | _ | | | _ | | ### Problems 2 | | R_0 | R_{120} | R_{240} | D | D' | D'' | |-----------|-----------|-----------|-----------|-----------|-----------|-----------| | R_0 | R_0 | R_{120} | R_{240} | D | D' | D'' | | R_{120} | R_{120} | R_{240} | R_0 | D'' | D | D' | | R_{240} | R_{240} | R_0 | R_{120} | D' | D'' | D | | D | D | D' | D'' | R_0 | R_{120} | R_{240} | | D' | D' | D'' | D | R_{240} | R_0 | R_{120} | | D'' | D'' | R_0 | D' | R_{120} | R_{240} | R_0 | Two pictures. Not abelian. 3 - $\mathbf{a.}\ V.$ - **b.** R_{270} . - **c.** R_0 . - **d.** R_0 , R_{180} , H, V, D, D'. - e. None. ### **5** We follow our intuition and generalize the cases of D_4 and D_3 with no formal argumentation. For both cases, Elements include rotations $\frac{i}{n}$ 360 for i = 1, 2, ..., n - 1. Counts n. Even case only. Flips about the *ith* diagonal (counts n/2), and Flips about the *ith* axis (counts n/2) **Odd case only.** Flips about the ith diagonal (counts n). D_n is going to have a total of 2n elements; This fact was mentioned in the textbook though. ### 11 Notation. We donate Rotation by T and Reflection by F. Lemma. Through Caylay table in page 33, TT = T, FF = T, TF = F, and FT = F. In other words $X^2 = T$, and XY = F if $X \neq Y$. Theorem. Observe we can re-structure the given composed function as $a^2b^2b^2acc^2c^2a^2ac = TTTacTTTac = (TTTac)^2 = T$. Therefore, Regardless of the choices of a, b, c, The given function is always a rotation. #### 13 $$D = HR_{90} = R_{90}V$$. #### 21 $X \neq H, V, D, D', R_0, R_{180}$, As otherwise $X^2 = R_0$ and then $Y = R_{90}$. For either of the remaining two cases $X = R_{90}$ or $X = R_{270}$, Necessarily $Y = R_{270}$.