Chapter 01

Mostafa Touny

September 9, 2023

Contents

Prob	le	en	\mathbf{ns}																								2
2																											2
3																											2
5																											
11	L																										
13	3																										•
21				_	_		_	_		_			_	_					_				_			_	

Problems

2

	R_0	R_{120}	R_{240}	D	D'	D''
R_0	R_0	R_{120}	R_{240}	D	D'	D''
R_{120}	R_{120}	R_{240}	R_0	D''	D	D'
R_{240}	R_{240}	R_0	R_{120}	D'	D''	D
D	D	D'	D''	R_0	R_{120}	R_{240}
D'	D'	D''	D	R_{240}	R_0	R_{120}
D''	D''	R_0	D'	R_{120}	R_{240}	R_0

Two pictures.

Not abelian.

3

- $\mathbf{a.}\ V.$
- **b.** R_{270} .
- **c.** R_0 .
- **d.** R_0 , R_{180} , H, V, D, D'.
- e. None.

5

We follow our intuition and generalize the cases of D_4 and D_3 with no formal argumentation.

For both cases, Elements include rotations $\frac{i}{n}$ 360 for i = 1, 2, ..., n - 1. Counts n.

Even case only. Flips about the *ith* diagonal (counts n/2), and Flips about the *ith* axis (counts n/2)

Odd case only. Flips about the ith diagonal (counts n).

 D_n is going to have a total of 2n elements; This fact was mentioned in the textbook though.

11

Notation. We donate Rotation by T and Reflection by F.

Lemma. Through Caylay table in page 33, TT = T, FF = T, TF = F, and FT = F. In other words $X^2 = T$, and XY = F if $X \neq Y$.

Theorem. Observe we can re-structure the given composed function as $a^2b^2b^2acc^2c^2a^2ac = TTTacTTTac = (TTTac)^2 = T$.

Therefore, Regardless of the choices of a, b, c, The given function is always a rotation.

13

$$D = HR_{90} = R_{90}V$$
.

21

 $X \neq H, V, D, D', R_0, R_{180}$, As otherwise $X^2 = R_0$ and then $Y = R_{90}$. For either of the remaining two cases $X = R_{90}$ or $X = R_{270}$, Necessarily $Y = R_{270}$.