Chapter 02

Mostafa Touny

November 16, 2023

Contents

oblems	
1	
2	
3	
5	
7	
14	
16	
18	
33	
34	
47	

Problems

1

- (b). No. 3/2 is not an integer.
- (d). Yes. cA is a totally valid matrix for any scalar c or matrix A.

2

- (a). Yes.
- **(b).** No. $\frac{1/2}{3} = \frac{1}{2} \frac{1}{3} \neq \frac{3}{2} = \frac{1}{2/3}$.
- (e). No. $(2^2)^3 = 2^6 \neq 2^8 = 2^{(2^3)}$

3

- (c). No. $3(x^2) \neq 3^2 x^2 = (3x)^2$
- (d). No. Known from linear algebra.

5

- (a). 20 13 = 7.
- (b). The problem is reduced to finding x and y such that 13x = 14y + 1. In other familiar notation from chapter 1, 13x 14y = 1. Clearly 13(-1) + (-14)(-1) = 1 so 13(-1+14) + (-14)(-1+13) = 1. Thus the inverse of 13 is 13.

7

Not closed. 1+3=4.

No inverse. $3 + x \neq 1$ for any odd integer x.

14

 $(ab)^3 = ababab.$

$$(ab^{-2}c)^{-2} = (ab^{-2}c)^{-1}(ab^{-2}c)^{-1} = c^{-1}b^{-3}a^{-1}c^{-1}b^{-3}a^{-1}$$

16

Fact. x^n is an odd integer for any odd x.

Fact. The summation of two even integers is even.

We take a different perspective of the problem by the set $\{(5 \cdot 1), (5 \cdot 3), (5 \cdot 5), (5 \cdot 7)\}$ modulo $5 \cdot 8$. Upon multiplying any two elements we get the form $5 \cdot 5 \cdot x \cdot y$ where $x, y \in \{1, 3, 5, 7\}$. Think of the output of multiplication as the factor of 5 deciding the element. Observe the element is decided by $5 \cdot x \cdot y \mod 8$. For example if we knew $5 \cdot 5 \cdot 5 \cdot 1 = (5)(8 + 8 + 8 + 1)$ then we can easily deduce the output of $\mod 5 \cdot 8$ operation is (5)(1).

The numbers 1, 3, 5, and 7 are all odds. So whatever x or y chosen, $5 \cdot x \cdot y$ will be odd. It follows $odd \mod 8 = odd \in \{1, 3, 5, 7\}$. To see why note 8k + odd = odd.

Lemma. The given set is closed under the given operation.

Lemma. The identity is $5 \cdot 5 = 25$.

Observe $5 \cdot 5 \cdot x \mod 8 = 24x + x \mod 8 = x \mod 8$ since $24x \mod 8 = 0$.

Lemma. THe inverse of 5x is 5x by computation on the given elements.

Lemma. Associativity is known from integers and modulus properties.

18

$$(R_0)^2 = (R_{180})^2 = H^2 = V^2 = D^2 = (D')^2 = R_0.$$

 $(R_{90})^2 = (R_{270})^2 = R_{180}.$
So $K = \{R_0, R_{180}\}$, and $L = \{R_0, R_{180}, H, V, D, D'\}.$

33

Observe the group follows the same pattern as \mathcal{Z}_4 .

	e	a	b	c	d
e	e	\overline{a}	b	c	d
a	a	b	c	d	e
b	b	c	d	e	\overline{a}
c	c	d	e	a	b
d	d	e	a	b	c

inverses. Since ad = e, $d = a^{-1}$. Since bc = e, $c = b^{-1}$.

$$ab = c. \ ab = (cc)b = c(cb) = ce = c.$$

$$db = a$$
. $db = d(aa) = (da)a = ea = a$.

$$cd = b$$
. $cd = c(bb) = (cb)b = eb = b$.

$$dc = b$$
. $dc = (bb)c = b(bc) = be = b$.

$$ac = d. d = bb = (aa)(dc) = a(ad)c = ac.$$

bd = **a.**
$$bd = (dc)(bb) = d(cb)b = db = a$$
.

$$dd = c$$
. $dd = (ac)(bb) = a(cb)b = ab = c$

34

 (\leftarrow) . Given ab = ba

$$(ab)^2 = (ab)(ab)$$

= $a(ba)b$, Associativity
= $a(ab)b$
= $(aa)(bb)$, Associativity
= a^2b^2

 (\rightarrow) . Given $(ab)^2 = a^2b^2$

$$(ab)^{2} = (ab)(ab)$$

$$= a(ba)b$$

$$= aabb$$

$$ba = ab, Cancellation$$

 (\leftarrow) . Given ab = ba

$$(ab)^{2} = (ab)^{-1}(ab)^{-1}$$

$$= b^{-1}a^{-1}b^{-1}a^{-1}$$

$$= b^{-1}(ba)^{-1}a^{-1}$$

$$= b^{-1}(ab)^{-1}a^{-1}$$

$$= b^{-1}b^{-1}a^{-1}a^{-1}$$

$$= (b)^{-2}(a)^{-2}$$

 (\to) . Given $(ab)^{-2} = b^{-2}a^{-2}$

$$(ab)^{-1}(ab)^{-1} = b^{-1}a^{-1}b^{-1}a^{-1}$$

$$= b^{-1}b^{-1}a^{-1}a^{-1}$$

$$a^{-1}b^{-1} = b^{-1}a^{-1}, \text{Cancellation}$$

$$(ba)^{-1} = (ab)^{-1}$$

Now observe by the definition of inverse, if $x = y^{-1}$ then $y = x^{-1}$. Therefore $ab = [(ab)^{-1}]^{-1}$ and $ba = [(ba)^{-1}]^{-1}$, and ab = ba.

Clearly $aabb = a^2b^2 = ee = e$, and $abab = (ab)^2 = e$. It follows aabb = abab, and by cancellation ab = ba.