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Consider |z| = n. Then z™ = 1 and no positive r < n where 2" = 1. It follows -~ o
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Analogously if (z71)" =1 then 2" = 1. That cannot happen for r < n.
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Identity is e = 0. @
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Fact. For any element z in any group, "™ = z"z™.

Fact. For any element z in any group, (2¥) = g™,
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We naively construct all possible subgroups, pruning possible branches by their properties.

Any subgroup must have the identity element. {Ro}. (+1)
( Ry, X}is a subgroup for any reflection X = H,V,D, D". (+4)
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Considering a subgroup with Rg, Xp, X; for distinct reflections Xo, X; it must be the
case we get rotation R, for s # 0. So we cannot have a subgroup restricted on reflections
other than the aforementioned case.

{Ro, Rigo}. (+1)

For any subgroup with Rgg or Ry, since it is closed it must contain also { Ry, Rgo, Riso, Roro}-
(+1)

For any subgroup containing {Ro, Rigo, H} it must contain also {Ro, Riso, H,V}. For @
any subgroup containing {Ro, Riso, V'} it must contain also {Ry, Riso, V. H}. (+1)

For any subgroup containing {Rg, Riso, D} it must contain also {Ro, Ri1go, D, D'}. For \
any subgroup containing {Ro, Riso, D'} it must contain also {Ry, Rig0, D, D'}. (+1)

For any subgroup containing R, for s # 180 and any reflection X = H,V, D, D', since
it is closed, it must contain also {Ro, Reo, Riso, Rano, H,V, D, D'}. (+1
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So far we counted 10 subgroups. \{Sow ere o) M fﬁf\o e S w% (j defd J [
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We show the contrapositive. Assume o™ = a" for m > n,~ Chen a™a™™ = a™a™"
implying a™ ™ =e, but m —n >0soais of a finite order.
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The question presumes the uniqueness of H. We won’t prove it.
— ) ;

H = {2(9k; + 15kg + 20k3) | k1, k2, k3 € Z}.g

Taking k1 = ko = ks = 0 yields the identity e = 0. For z € H corresponding to k;, Take i

=(k;) to obtain the inverse. Closed property is clear from the definition. Associativity & 1 t |

follows from G. QOdd numbers are excluded conforming to the fact H is a propfr
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Since e € H and e € K by definition, We have e € H M I< )
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if 1,9,z € HN K, then z,y,z € H and associativity follows. .AS‘SbC ) %zlf"% b}@q e M
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ifr,yc HNK,thenz+yc Handz+ye€ K by properties of a group. A

if € HN K, then —z € H and —z € K, and any element has an inverse

A trivial argument by induction shows the intersection of any number of subgroups. 2\
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