9

Chapter 03

Mostafa Touny

September 17, 2023

Contents

Problems																																2
2		•			•													٠		•			•	٠			•					2
1											٠.																	٠				2
6(h)																													•			2
7		•							•		•			•	•	•	•	•	٠	٠	٠	٠				•	•	•	•	•	•	2
10								•	•	•	•	٠	•	•			•	•	•	٠	•	٠		•	•	٠	•	•	•	٠	٠	3
19										٠,	•	•	•	•	•	•	•	•	•		•	٠	•	•				٠		٠	٠	ა ი
30										•		•	•	•	٠	•	٠	•			•	•	•		•		٠	•	•	•	•	ა ი
34																								•	•		•	•		•		3

Problems

2

$$(Q,+). \{\frac{x}{2} \mid x \in \mathcal{Z}\}.$$

 $(Q^*,*). \{2^x \mid x \in \mathcal{Z}^+\} \cup \{\frac{1}{2^x} \mid x \in \mathcal{Z}^+\} \cup \{1\}.$

4

Consider |x| = n. Then $x^n = 1$ and no positive r < n where $x^r = 1$. It follows

$$(x^{n})^{-1} = (1)^{-1}$$

$$(x \cdot x \cdot \dots \cdot x)^{-1} = 1$$

$$x^{-1} \cdot \dots \cdot x^{-1} =$$

$$(x^{-1})^{n} =$$

$$(x^{-1})^{n} =$$

Analogously if $(x^{-1})^r = 1$ then $x^r = 1$. That cannot happen for r < n.

6(b)

Identity is e = 0.

Identity is
$$e = 0$$
.
 $|3| = 4$. $|8| = 3$. $|11| = 12$.

7

Fact. For any element x in any group, $x^{n+m} = x^n x^m$.

Fact. For any element x in any group, $(x^k)^m = x^{km}$.

$$(a^{4}c^{-2}b^{4})^{-1} = (b^{4})^{-1}(c^{-2})^{-1}(a^{4})^{-1}$$

$$= (b^{4})^{-1}(c^{2})(a^{4})^{-1}$$

$$= (b^{7}b^{-3})^{-1}(c^{2})(a^{6}a^{-2})^{-1}$$

$$= (b^{-3})^{-1}(c^{2})(a^{-2})^{-1}$$

$$= b^{3}c^{2}a^{2}$$

10

We naively construct all possible subgroups, pruning possible branches by their properties.

Any subgroup must have the identity element. $\{R_0\}$. (+1)

 R_0, X is a subgroup for any reflection X = H, V, D, D'. (+4)

Considering a subgroup with R_0, X_0, X_1 for distinct reflections X_0, X_1 it must be the case we get rotation R_s for $s \neq 0$. So we cannot have a subgroup restricted on reflections other than the aforementioned case.

 $\{R_0, R_{180}\}. (+1)$

For any subgroup with R_{90} or R_{270} , since it is closed it must contain also $\{R_0, R_{90}, R_{180}, R_{270}\}$. (+1)

For any subgroup containing $\{R_0, R_{180}, H\}$ it must contain also $\{R_0, R_{180}, H, V\}$. For any subgroup containing $\{R_0, R_{180}, V\}$ it must contain also $\{R_0, R_{180}, V, H\}$. (+1)

For any subgroup containing $\{R_0, R_{180}, D\}$ it must contain also $\{R_0, R_{180}, D, D'\}$. For any subgroup containing $\{R_0, R_{180}, D'\}$ it must contain also $\{R_0, R_{180}, D, D'\}$. (+1)

For any subgroup containing R_s for $s \neq 180$ and any reflection X = H, V, D, D', since it is closed, it must contain also $\{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$. (+1)

So far we counted 10 subgroups. You were asked good 5 mb groups

19

We show the contrapositive. Assume $a^m = a^n$ for m > n. Then $a^m a^{-n} = a^n a^{-n}$ implying $a^{m-n} = e$, but m - n > 0 so a is of a finite order. (

30

The question presumes the uniqueness of H. We won't prove it.

 $H = \{2(9k_1 + 15k_2 + 20k_3) \mid k_1, k_2, k_3 \in \mathcal{Z}\}.$

Taking $k_1 = k_2 = k_3 = 0$ yields the identity e = 0. For $x \in H$ corresponding to k_i , Take $-(k_i)$ to obtain the inverse. Closed property is clear from the definition. Associativity dofollows from G. Odd numbers are excluded conforming to the fact H is a proper This is not a clear description of subgroup.

34

Since $e \in H$ and $e \in K$ by definition, We have $e \in H \cap \mathcal{K}$

Association ty is inherate if $x, y, z \in H \cap K$, then $x, y, z \in H$ and associativity follows. if $x \in H \cap K$, then $-x \in H$ and $-x \in K$, and any element has an inverse f(x)

if $x, y \in H \cap K$, then $x + y \in H$ and $x + y \in K$ by properties of a group.

A trivial argument by induction shows the intersection of any number of subgroups.

his induction will give you only finite intersection, not arbitrary intersection!

Transfinite induction