7.5

Chapter 04

Mostafa Touny

September 25, 2023

Contents

oble	en	ıs																																		
оріє 1.					•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•
5.													•	٠		•				•	٠	٠	•	٠	•	٠	٠	٠	•	٠	٠	•	•	•	٠	•
10																			•			٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•
11											•				•	•	•	•		•	٠	•	٠	•	•	•	•	٠	•	٠	•	٠	•	9	•	•
27																٠	•	•			÷	•	•	•	٠	•	•	٠	٠	•	٠		٠	•	•	٠
30																•	•	•		•	٠		•		•		٠	٠	•	٠	•	٠	•	٠	•	•
36												•			•		٠	•	•	٠	•	٠	٠	•	•	٠	٠	٠	•	•	٠	٠	٠	٠	•	•
48								•				•	•		•		•	•	:	٠	•	٠	٠	•		•	٠	•	•	•	•	•	•	•	•	•
59												•				•		•	•		•	•	٠	٠		•	•	•	٠	•	•		٠	•	•	•
																																				•

Problems

1

By corollary 4 (page 80).

Generators of \mathcal{Z}_6 are 1,5 since gcd(1,6) = gcd(5,6) = 1.

Generators of \mathcal{Z}_8 are 1,3,5,7 since gcd(1,8)=gcd(3,8)=gcd(5,8)=gcd(7,8)=1.

Generators of \mathcal{Z}_{20} are 1, 3, 7, 9, 11, 13, 17, 19 since gcd(1, 20) = gcd(3, 20) = gcd(7, 20) = gcd(7, 20)gcd(9,20) = gcd(11,20) = gcd(13,20) = gcd(17,20) = gcd(19,20) = 1.

5

 $\langle 3 \rangle \ = \ \{3^0, 3^1, 3^2, 3^3, 3^4, 3^5, \dots\} \ \cup \ \{3^{-1}, 3^{-2}, 3^{-3}, 3^{-4}, 3^{-5}, \dots\} \ = \ \{0, 3, 9, 7, 1, 3, \dots\} \ \cup \ \{3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, \dots\} \ = \ \{0, 3, 9, 7, 1, 3, \dots\} \ \cup \ \{3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, \dots\} \ = \ \{0, 3, 9, 7, 1, 3, \dots\} \ \cup \ \{3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, \dots\} \ = \ \{0, 3, 9, 7, 1, 3, \dots\} \ \cup \ \{3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, 3^{-1}, \dots\} \ = \ \{0, 3, 9, 7, 1, 3, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, 1, \dots\} \ \cup \ \{0, 3, 9, 1, 1, \dots$ $\{-3, 9, -7, 1, -3, \dots\} = \{0, 3, 9, 7, 1, 3\} \cup \{17, 9, 13, 1, 17\} = \{0, 1, 3, 7, 9, 13, 17\}.$

10

 $\{0, 3, 6, 9, 12, 15, 18, 21\}$

Note any generator of that subgroup must be contained in it as $a = a^1 \in \langle a \rangle$.

By corollary 3 (page 80). Generators are $3^5 = 15$ and $3^7 = 21$, as gcd(24,5) =gcd(24,7) = 1.

By corollary 3 (page 80). Generators of arbitrary G are 1, 5, 7, 11, 13, 17, 19, 23 since gcd(24,i)=1. Observe since G is generated by a, Any candidate must be of the form a^i . So we covered all of them.

11

Follows trivially by corollary 3 (page 80), as gcd(n, -1) = 1.

This can be used if G is cyclic to We also DK if (a) is finite! 27

We know given a positive integer n, there is a complex z such that z^n $S_n = \{z^0, z^1, z^2, \dots\} = \{z^0, z^1, \dots, z^{n-1}\}$. Clearly it is a group.

For z^{-i} observe -i = n(m) + r where $0 \le r < n$. Then -i - r is divisable by n, and by theorem 4.1 (page 76), $z^{-i} = z^r$. Then $\{z^{-1}, z^{-2}, ...\}$ is contained in S_n .

Thus we conclude $S_n = \langle z \rangle$ is a subgroup of order n.

30

We call a subgroup new if it is not $\{e\}$ or G. Observe constructing it contradicts a given hypothesis.

Select $a \neq e$. If $\langle a \rangle$ is of infinite order, then $\langle a^2 \rangle$ is a new subgroup. So $\langle a \rangle$ is of finite If $\langle a \rangle \neq G$ then $\langle a \rangle$ is a *new* subgroup. So $\langle a \rangle = G$.

If n is not prime, i.e composite, then by theorem 4.3 (page 81), we can take divisor ksuch that $\langle a^{n/k} \rangle$ is a new subgroup of order k. Note by divisibility 1 < k < n.

It follows G is a finite cyclic group of prime order n.

36

	4	8	12	16
4	16	12	8	4
8	12	4	16	8 .
12	8	16	4.	1,2
16	4	8	12	16

All entries are contained in {4,8,12,16}, So closed. 16 is the identity. Every row has an 16 entry showing inverses existince. The group is cyclic.

Its generators are all its elements, 4, 8, 12 and 16. To see why you can trace the table. For example $8^1 = 8$, $8^2 = 4$, $8^3 = 8^2 \cdot 8 = 4 \cdot 8 = 12$, $8^4 = 8^3 \cdot 8 = 12 \cdot 8 = 16$.

H is a subgroup by Theorem 3.2 (page 63). Given $a = 10k_0 = 8k_1$ and $b = 10k_2 = 8k_3$, Trivially $a + b = 10(k_0 + k_2) = 8(k_1 + k_3) \in H$. Also $-a = 10(-k_0) = 8(-k_1) \in H$.

H is not a subgroup in case of "OR". Consider the counter-example 10 + 8 = 18 as 18 is neither divisible by 10 nor 8, Violating closeness property.

59

* Partially Solved.

Let G be a group with only a and b elements of order 2. We try to come-up with a contradiction.

By definition $a^2 = b^2 = e$, so $a^{-1} = a$ and $b^{-1} = b$. Clearly $ab \neq a, b$, or e . For example
if $ab = e$ then $b = a^{-1} = a$ which is not true as a and b are given as distinct elements.
Case $ab = ba$. Then $(ab)^2 = (ab)(ba) = aea = a^2 = e$. Contradiction.
Case $ab \neq ba$. No solution found for that case. $aba \neq ab$
Case $ab \neq ba$. No solution found for that case. $aba \neq a$, $b \neq a$. No solution found for that case. $aba \neq a$, $b \neq a$. A case $aba = aba = a$
61 in general 10 = aba Va, b € 6
Let $x \in \langle a \rangle \cap \langle b \rangle$. Then by corollary 1 (page 79), $ x $ divides both 10 and 21. Since
they are coprime, $ x = 1$ and $x^1 = x = e$.
Write more pleased -

=R