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We want to find some permutation

[123456}

where:

e Order is 15, i.e lem of disjoint cycles lengths is 15, and
e Even, i.e Has an even number of 2-cycles.

Observe 15 = 3 - 5 which suggests two disjoint cycles of lengths 3 and 5. A standard
candidate is (123)(45678). Its 2-cycles form: (48)(47)(46) (45)(13)(12), A total of even

6 cycles.
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The permutation in matrix form is: @/ }
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Using theorem 3.3 (page 64), It suffices-to show the set of even permutations are
closed under permutation composition. By definition, Given even permutations a =
(ab)(cd) ... (ef) and B = (gh)(if) . .- (kl), The composition af = (ab) - .. (kl) consists
of even number of 2-cycles, As even + even = even. “qc
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,baén equal number of even and odd members.

We follow the same proof approach of theorem 5.7 (page 104). We know there is an —
odd member «. For every odd 3, a3 is even, So there as @a_qu_s__a_s_thgm_are_mi@_. i
For every even (3, aff is odd, So there are as many odds as there are evens. Therefore,

the number of even and odd members are equal. 4
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The identity permutation is even. Not closed as the composition of two odd mémbers
is even. )
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For n > 3, It is easy to see (12) € Sy, and (23) € Sn. However
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