Chapter 06

Mostafa Touny

October 3, 2023

Contents

blems	
1	
2	
4	
1	
2	
4	
4	

Problems

1

 $\phi(n) = 2n$. If 2a = 2b then a = b. For each 2k we have $\phi(k) = 2k$. Observe $\phi(ab) = 2(a+b) = 2a + 2b = \phi(a)\phi(b)$, Following by usual properties of integers.

2

We Follow the same proof approach of *Example 15* (page 130). Let $\phi \in Aut(Z)$ be arbitrary. Then by the usual properties of integers and isomorphisms, $\phi(k) = \phi(1+1+\cdots+1) = \phi(1) + \cdots + \phi(1) = k \cdot \phi(1)$. But by definition $\phi(1) = c$ for some integer c. Therefore $\phi(k) = kc$. In other words, $Aut(Z) = \{\phi \mid \exists c, \forall k \ \phi(k) = kc\}$

4

Caylay table of U(8):

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Caylay table of U(10):

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

Recall from theorem 6.2 (page 126), Any ϕ maps the identity to the identity of the other group.

In U(8) we have $3 \cdot 3 = 1$. Then $\phi(3 \cdot 3) = \phi(3) \cdot \phi(3) = \phi(1) = 1$. The only non-identity element in U(10) satisfying that is 9. Hence $\phi(3) = 9$.

Similarly $5 \cdot 5 = 1$. Then we must have some $a \in U(10)$ such that $a \cdot a = 1$ where $a \notin \{1, 9\}$. Contradiction.

8

Injective. Given $\log_{10} a = \log_{10} b$, we get $10^{\log_{10} a} = 10^{\log_{10} b}$, and a = b.

Surjective. Given $x \in \mathcal{R}$, take $a = 10^x \in \mathcal{R}^+$. Then $\log_{10} a = \log_{10} 10^x = x$.

Group Operation. Observe $\phi(ab) = \log_{10} ab = \log_{10} a + \log_{10} b = \phi(a) + \phi(b)$.

11

Observe $\phi(a^3b^{-2}) = \phi(a^3) + \phi(b^{-2}) = [\phi(a)]^3 + [\phi(b)]^{-2} = (\overline{a})^3 + (\overline{b})^{-2}$. We used theorem 6.2 (2).

12

 (\rightarrow) . For any $a, b \in G$, We have:

$$\alpha(a^{-1}b^{-1}) = \alpha(a^{-1})\alpha(b^{-1})$$
$$(a^{-1}b^{-1})^{-1} = ba = ab$$

(\leftarrow). Symmetrically, If we have $b^{-1}a^{-1}=a^{-1}b^{-1}$, Then $\alpha(ab)=\alpha(a)\alpha(b)$. Bijection is clear by properties of inverses.

14

By theorem 6.5 (page 131), $Aut(Z_3) \approx U(3)$ and $Aut(Z_4) \approx U(4)$, so $Aut(Z_3) \approx Aut(Z_4)$ by the transitivity of isomorphism. But $Z_3 \not\approx Z_4$ as the two groups have different orders, so no bijection exists.

21

Clearly groups H and K are isomorphic to S_4 . By transitivity $H \approx K$.

22

For every c = 2, 3, 4..., Consider the subset $H_c = \{ck \mid k \in \mathbb{Z}\}$. It is a subgroup, As it has the identity c(0), inverses c(-k), and closed $ck_1 + ck_2 = c(k_1 + k_2)$.

It remains to show those subgroups are distinct. For any c_1 and c_2 where $c_1 < c_2$ we have $c_1(1) \in H_{c_1}$ but $c_1(1) \notin H_{c_2}$. Therefore $H_{c_1} \neq H_{c_2}$.

24

We use theorem 3.2 (page 63). If $\phi(a) = a$ then $\phi(a^{-1}) = (\phi(a))^{-1} = a^{-1}$. Also, If $\phi(a) = a$ and $\phi(b) = b$ then $\phi(ab) = \phi(a)\phi(b) = ab$.

34

Let K be a subgroup of G. We use theorem 3.2 (page 63).

Inverse. For any $\phi(k) \in \phi(K)$, $(\phi(k))^{-1} = \phi(k^{-1})$. But $k^{-1} \in K$, So $\phi(k^{-1}) \in \phi(K)$.

Closed. For $\phi(k_1), \phi(k_2) \in \phi(K)$, We have $\phi(k_1)\phi(k_2) = \phi(k_1k_2)$. But $k_1k_2 \in K$, So $\phi(k_1k_2) \in \phi(K)$.