

Chapter 07

Mostafa Touny

October 10, 2023

Contents

Problems																									2				
1 .																													2
7.																													
9 .																													2
10																													2
17																													2
19																													2
22																													
38						•																							3
39																													3

Problems

1

Those are $\{a\langle 3\rangle \mid a \in \mathcal{Z}\} = \{\{a \pm 0, a \pm 3, a \pm 6, \ldots\} \mid a \in \mathcal{Z}\}.$ Thus the wrong but they one only $\{a \in \mathcal{Z}\}$. Observe $\langle a^4 \rangle = \{1, a^{4(1)}, a^{4(2)}, \dots, a^{4(14)}\}$. Then $|\langle a^4 \rangle| = 15$. It follows by theorem 7.1 (page 142), The number of distinct left cosets is 30/15 = 2. Dazy to compute and typeset all left cosets. H is a subgroup. Then by theorem 7.1 (page 142), the number of left cosets of H in $S - \frac{1}{4} S_4$ is 4!/4 = 3! = 6. Assume for contradiction $aH \cap bH = \phi$. Since we are given aH = bK, It follows a H $\cap bH = \phi$ Contradiction as the identity element $e \in G$ is common in both subgroups. Therefore $aH \cap bH \neq \phi$.

From Lemma (page 139), We get aH = bH. Then bK = aH It follows K = aH.

It follows K = aH.

16w?

17

Let H be a proper subgroup of G. If |H| = 1, Then $H = \{e\} = \langle e \rangle$. it is cyclic. Now assume |H| > 1. Then by theorem 7.1 (page 143), and without the loss of generality, |H| = p for a prime p. By corollary 3, H is cyclic.

19

 $5^{16} \mod 7 = 6 \mod 7^{13} \mod 11 = 2$, Using the fact $ab \mod m = (a \mod m)(b \mod m)$ De Fernatt's last theorem $\mod m$) $\mod m$.

22

Let H and K be finite subgroups of a group G, Where |H| and |K| are coprime. Since $H \cap K$ is a subgroup of both H and K, By theorem 7.1 (page 142), $|H \cap K| = 1$. Then $H \cap K = \{e\}$, where e is the identity of G.

38

39

We know all common divisors among 24 and 20 are 1, 2, 4. By theorem 7.1 (page 142), It follows $|H \cap K| = 1, 2$, or 4.

Case. $|H \cap K| = 1$. Then it is the trivial group of only the identity element.

Case. $|H \cap K| = 2$. Then it is $\{e, a\}$. Trivially abelian.

Fact. For any two elements a, b of a group. If ab = b then a = e, the identity element. Observe we can cancel b in ab = eb = b.

Case. $|H \cap K| = 4$. Assume for contradiction, that $ab \neq ba$ for arbitrary distinct elements a and b, Neither of which is the identity. Then $ab \notin \{a,b\}$ by the Fact. Moreover $ab \neq e$ lest $b = a^{-1}$ and then ab = ba. Symmetrically these conclusions apply on ba. Since we excluded 3 elements out of 4, There is only a single element ab and ba can both be assigned to, i.e ab = ba. Contradiction.

