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Problems

1

We use Theorem 14.1 (ideal test) (page 249).

For r0a, r1a ∈ ⟨a⟩, We have r0a−r1a = (r0−r1)a ∈ ⟨a⟩ by distributivity and r0−r1 ∈ R.

For r ∈ R and r0a ∈ ⟨a⟩, We have r(r0a) = (rr0)a ∈ ⟨a⟩ by associativity and rr0 ∈ R.
Also (r0a)r = r0(ar) = r0(ra) = (r0r)a by associativity and commutativity and r0r ∈
R.

3

The proof I is ideal by Theorem 14.1 (ideal test) (page 249) is nearly identical to Ex.
1.

Let J be an arbitrary ideal that contains a1, a2, . . . , an. Then by definition rai ∈ J .
Since it’s a group r1a1 + · · ·+ rnan ∈ J for any ri ∈ R.

4

By the subring test (page 230), S = {(x, x) | x ∈ Z} is a subring as (x, x) − (y, y) =
(x− y, x− y) ∈ S and (x, x)(y, y) = (xy, xy) ∈ S.

S is not an ideal as (1, 1) ∈ S and (1, 2) ∈ Z⊕ Z but (1, 2)(1, 1) = (1, 2) /∈ S. In other
words, (1, 1) did not absorb (1, 2).

5

We use Theorem 12.3 (subring test) (page 230). (a+bi)−(a′+b′i) = (a−a′)+(b−b′)i ∈ S
as b− b′ is even. (a+ bi)(a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i ∈ S as ab′ + a′b is even.

1 + 2i ∈ S and 1 + 1i ∈ Z[i] but (1 + 1i)(1 + 2i) = −1 + 3i ̸∈ S as 3 is not even. A
counter-example of S being an ideal.

11

a

⟨a⟩ = ⟨1⟩ = Z. We know GCD(2, 3) = 1 so by Theorem 0.2 (GCD is a linear
combination) (page 4), there are x, y ∈ Z such that 2x+ 3y = 1. So for any integer m,
2(xm) + 3(ym) = m. In other words, Z = ⟨1⟩ ⊂ ⟨2⟩+ ⟨3⟩.
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b

⟨a⟩ = ⟨2⟩. Trivially ⟨6⟩ + ⟨8⟩ ⊂ ⟨2⟩ as 2 is a common divisor of 6 and 8. Observe
8(1) + 6(−1) = 2. So for any multiple 2m, We have 8(m) + 6(−m) = 2m, concluding
⟨2⟩ ⊂ ⟨8⟩+ ⟨6⟩.

15

By definition A ⊂ R and r = r1 ∈ A for any r ∈ R.

32

Let B be an arbitrary ideal of Z ⊕ Z such that A ⊂ B ⊂ Z ⊕ Z. Assume B properly
contains A then we show B = Z⊕ Z.

By hypothesis we have (a, b) ∈ B but not in A. So a = 3q + r whereby either r = 1 or
r = 2. Consider each case:

� r = 1. Since A ⊂ B, (3(−q),−(b− 1)) ∈ B. As B is a group, (3(−q),−(b− 1)) +
(3q + 1, b) = (1, 1) ∈ B.

� r = 2. Similarly (3(q+1), b+1) ∈ B and (3(q+1), b+1)−(3q+2, b) = (1, 1) ∈ B.

By Ex. 15 B = Z⊕ Z.

Had A been {(4x, y) | x, y ∈ Z} then the property of it being a maximal ideal fails as
the ideal {(2x, y)} is strictly larger.

Generally, {(rx, y)} is a maximal ideal if and only if r is a prime. If r is composite then
any divisor generates a larger ideal. If r is prime then for any m where 0 < m < r,
gcd(r,m) = 1. It follows by Theorem 0.2 (GCD is a linear combination) (page 4) there
is a linear combination xr + ym = 1.

37

If (x, y), (a, b) ∈ Z ⊕ Z and (x, y)(a, b) = (xa, yb) ∈ I then by definition yb = 0. So
either y = 0 or b = 0. In other words, either (x, y) ∈ I or (a, b) ∈ I.

The set {(x, 2y) | x, y ∈ Z} is an ideal and properly contains I. So I is not maximal.
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